mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 02:26:29 +08:00
4359 lines
No EOL
284 KiB
HTML
4359 lines
No EOL
284 KiB
HTML
|
||
<!doctype html>
|
||
<html lang="zh" class="no-js">
|
||
<head>
|
||
|
||
<meta charset="utf-8">
|
||
<meta name="viewport" content="width=device-width,initial-scale=1">
|
||
|
||
<meta name="description" content="动画图解、一键运行的数据结构与算法教程">
|
||
|
||
|
||
<meta name="author" content="Krahets">
|
||
|
||
|
||
<link rel="canonical" href="https://www.hello-algo.com/chapter_dynamic_programming/dp_problem_features/">
|
||
|
||
|
||
<link rel="prev" href="../intro_to_dynamic_programming/">
|
||
|
||
|
||
<link rel="next" href="../dp_solution_pipeline/">
|
||
|
||
|
||
<link rel="icon" href="../../assets/images/favicon.png">
|
||
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.2.0-b0">
|
||
|
||
|
||
|
||
<title>14.2 DP 问题特性 - Hello 算法</title>
|
||
|
||
|
||
|
||
<link rel="stylesheet" href="../../assets/stylesheets/main.0c456da8.min.css">
|
||
|
||
|
||
<link rel="stylesheet" href="../../assets/stylesheets/palette.ecc896b0.min.css">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
||
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
|
||
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
|
||
|
||
|
||
|
||
<link rel="stylesheet" href="../../stylesheets/extra.css">
|
||
|
||
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</head>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo">
|
||
|
||
|
||
|
||
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
|
||
|
||
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
|
||
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
|
||
<label class="md-overlay" for="__drawer"></label>
|
||
<div data-md-component="skip">
|
||
|
||
|
||
<a href="#142" class="md-skip">
|
||
跳转至
|
||
</a>
|
||
|
||
</div>
|
||
<div data-md-component="announce">
|
||
|
||
</div>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<header class="md-header md-header--shadow" data-md-component="header">
|
||
<nav class="md-header__inner md-grid" aria-label="页眉">
|
||
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
|
||
|
||
<img src="../../assets/images/logo.png" alt="logo">
|
||
|
||
</a>
|
||
<label class="md-header__button md-icon" for="__drawer">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
|
||
</label>
|
||
<div class="md-header__title" data-md-component="header-title">
|
||
<div class="md-header__ellipsis">
|
||
<div class="md-header__topic">
|
||
<span class="md-ellipsis">
|
||
Hello 算法
|
||
</span>
|
||
</div>
|
||
<div class="md-header__topic" data-md-component="header-topic">
|
||
<span class="md-ellipsis">
|
||
|
||
14.2 DP 问题特性
|
||
|
||
</span>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<form class="md-header__option" data-md-component="palette">
|
||
|
||
|
||
|
||
|
||
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
|
||
|
||
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
|
||
</label>
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="grey" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
|
||
|
||
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
|
||
</label>
|
||
|
||
|
||
</form>
|
||
|
||
|
||
|
||
|
||
<label class="md-header__button md-icon" for="__search">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
||
</label>
|
||
<div class="md-search" data-md-component="search" role="dialog">
|
||
<label class="md-search__overlay" for="__search"></label>
|
||
<div class="md-search__inner" role="search">
|
||
<form class="md-search__form" name="search">
|
||
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
|
||
<label class="md-search__icon md-icon" for="__search">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
||
</label>
|
||
<nav class="md-search__options" aria-label="查找">
|
||
|
||
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
|
||
</a>
|
||
|
||
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
|
||
</button>
|
||
</nav>
|
||
|
||
<div class="md-search__suggest" data-md-component="search-suggest"></div>
|
||
|
||
</form>
|
||
<div class="md-search__output">
|
||
<div class="md-search__scrollwrap" data-md-scrollfix>
|
||
<div class="md-search-result" data-md-component="search-result">
|
||
<div class="md-search-result__meta">
|
||
正在初始化搜索引擎
|
||
</div>
|
||
<ol class="md-search-result__list" role="presentation"></ol>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<div class="md-header__source">
|
||
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
|
||
<div class="md-source__icon md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
||
</div>
|
||
<div class="md-source__repository">
|
||
krahets/hello-algo
|
||
</div>
|
||
</a>
|
||
</div>
|
||
|
||
</nav>
|
||
|
||
</header>
|
||
|
||
<div class="md-container" data-md-component="container">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<main class="md-main" data-md-component="main">
|
||
<div class="md-main__inner md-grid">
|
||
|
||
|
||
|
||
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
|
||
<div class="md-sidebar__scrollwrap">
|
||
<div class="md-sidebar__inner">
|
||
|
||
|
||
|
||
|
||
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
|
||
<label class="md-nav__title" for="__drawer">
|
||
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
|
||
|
||
<img src="../../assets/images/logo.png" alt="logo">
|
||
|
||
</a>
|
||
Hello 算法
|
||
</label>
|
||
|
||
<div class="md-nav__source">
|
||
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
|
||
<div class="md-source__icon md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
||
</div>
|
||
<div class="md-source__repository">
|
||
krahets/hello-algo
|
||
</div>
|
||
</a>
|
||
</div>
|
||
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_preface/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 0 章 前言
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_1">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_1">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 0 章 前言
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
0.1 关于本书
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
0.2 如何使用本书
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_preface/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
0.3 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_introduction/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 1 章 初识算法
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_2">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_2">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 1 章 初识算法
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
1.1 算法无处不在
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
1.2 算法是什么
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_introduction/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
1.3 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 2 章 复杂度分析
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_3">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_3">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 2 章 复杂度分析
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.1 算法效率评估
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_computational_complexity/iteration_and_recursion/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.2 迭代与递归
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.3 时间复杂度
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.4 空间复杂度
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
2.5 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_data_structure/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 3 章 数据结构
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_4">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_4">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 3 章 数据结构
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.1 数据结构分类
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.2 基本数据类型
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.3 数字编码 *
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.4 字符编码 *
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
3.5 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 4 章 数组与链表
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_5">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_5">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 4 章 数组与链表
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
4.1 数组
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
4.2 链表
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
4.3 列表
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
4.4 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 5 章 栈与队列
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_6">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_6">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 5 章 栈与队列
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
5.1 栈
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
5.2 队列
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
5.3 双向队列
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
5.4 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_hashing/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 6 章 哈希表
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_7">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_7">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 6 章 哈希表
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
6.1 哈希表
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
6.2 哈希冲突
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
6.3 哈希算法
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_hashing/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
6.4 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_tree/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 7 章 树
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_8">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_8">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 7 章 树
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
7.1 二叉树
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
7.2 二叉树遍历
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
7.3 二叉树数组表示
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
7.4 二叉搜索树
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
7.5 AVL 树 *
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_tree/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
7.6 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_heap/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 8 章 堆
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_9">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_9">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 8 章 堆
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_heap/heap/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
8.1 堆
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
8.2 建堆操作
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_heap/top_k/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
8.3 Top-K 问题
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_heap/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
8.4 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_graph/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 9 章 图
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_10">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_10">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 9 章 图
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_graph/graph/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
9.1 图
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
9.2 图基础操作
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
9.3 图的遍历
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_graph/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
9.4 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_searching/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 10 章 搜索
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_11">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_11">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 10 章 搜索
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
10.1 二分查找
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
10.2 二分查找插入点
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
10.3 二分查找边界
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
10.4 哈希优化策略
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
10.5 重识搜索算法
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_searching/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
10.6 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_sorting/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 11 章 排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_12">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_12">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 11 章 排序
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.1 排序算法
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.2 选择排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.3 冒泡排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.4 插入排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.5 快速排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.6 归并排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.7 堆排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.8 桶排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.9 计数排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.10 基数排序
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_sorting/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
11.11 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7h-5M2 9v6h5V9H2m10 0v2H9v2h3v2l3-3-3-3m5 2v2h5v-2h-5m0 4v2h5v-2h-5Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 12 章 分治
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_13">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_13">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 12 章 分治
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
12.1 分治算法
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
12.2 分治搜索策略
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
12.3 构建树问题
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
12.4 汉诺塔问题
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
12.5 小结
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_backtracking/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 13 章 回溯
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_14">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_14">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 13 章 回溯
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
13.1 回溯算法
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
13.2 全排列问题
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
13.3 子集和问题
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
13.4 N 皇后问题
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
13.5 小结
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" checked>
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 14 章 动态规划
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_15">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="true">
|
||
<label class="md-nav__title" for="__nav_15">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 14 章 动态规划
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../intro_to_dynamic_programming/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
14.1 初探动态规划
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--active">
|
||
|
||
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
|
||
|
||
|
||
|
||
|
||
|
||
<label class="md-nav__link md-nav__link--active" for="__toc">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
14.2 DP 问题特性
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
<a href="./" class="md-nav__link md-nav__link--active">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
14.2 DP 问题特性
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
|
||
|
||
|
||
<nav class="md-nav md-nav--secondary" aria-label="目录">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<label class="md-nav__title" for="__toc">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
目录
|
||
</label>
|
||
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#1421" class="md-nav__link">
|
||
14.2.1 最优子结构
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#1422" class="md-nav__link">
|
||
14.2.2 无后效性
|
||
</a>
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../dp_solution_pipeline/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
14.3 DP 解题思路
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../knapsack_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
14.4 0-1 背包问题
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../unbounded_knapsack_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
14.5 完全背包问题
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../edit_distance_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
14.6 编辑距离问题
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
14.7 小结
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_greedy/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16v.04Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 15 章 贪心
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_16">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_16">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 15 章 贪心
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
15.1 贪心算法
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
15.2 分数背包问题
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
15.3 最大容量问题
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
15.4 最大切分乘积问题
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_greedy/summary/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
15.5 小结
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<span class="md-status md-status--new" title="最近添加">
|
||
</span>
|
||
|
||
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_appendix/" class="md-nav__link ">
|
||
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
|
||
|
||
<span class="md-ellipsis">
|
||
第 16 章 附录
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
<label class="md-nav__link " for="__nav_17">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
</label>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_17">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
第 16 章 附录
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_appendix/installation/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
16.1 编程环境安装
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item">
|
||
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
16.2 一起参与创作
|
||
</span>
|
||
|
||
|
||
</a>
|
||
</li>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<li class="md-nav__item md-nav__item--nested">
|
||
|
||
|
||
|
||
|
||
|
||
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
|
||
|
||
|
||
|
||
<div class="md-nav__link md-nav__container">
|
||
<a href="../../chapter_reference/" class="md-nav__link ">
|
||
|
||
|
||
<span class="md-ellipsis">
|
||
参考文献
|
||
</span>
|
||
|
||
|
||
</a>
|
||
|
||
</div>
|
||
|
||
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
|
||
<label class="md-nav__title" for="__nav_18">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
参考文献
|
||
</label>
|
||
<ul class="md-nav__list" data-md-scrollfix>
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
</li>
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
|
||
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
|
||
<div class="md-sidebar__scrollwrap">
|
||
<div class="md-sidebar__inner">
|
||
|
||
|
||
<nav class="md-nav md-nav--secondary" aria-label="目录">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<label class="md-nav__title" for="__toc">
|
||
<span class="md-nav__icon md-icon"></span>
|
||
目录
|
||
</label>
|
||
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#1421" class="md-nav__link">
|
||
14.2.1 最优子结构
|
||
</a>
|
||
|
||
</li>
|
||
|
||
<li class="md-nav__item">
|
||
<a href="#1422" class="md-nav__link">
|
||
14.2.2 无后效性
|
||
</a>
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
</nav>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
|
||
<div class="md-content" data-md-component="content">
|
||
<article class="md-content__inner md-typeset">
|
||
|
||
|
||
|
||
|
||
<a href="https://github.com/krahets/hello-algo/tree/main/docs/chapter_dynamic_programming/dp_problem_features.md" title="编辑此页" class="md-content__button md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M10 20H6V4h7v5h5v3.1l2-2V8l-6-6H6c-1.1 0-2 .9-2 2v16c0 1.1.9 2 2 2h4v-2m10.2-7c.1 0 .3.1.4.2l1.3 1.3c.2.2.2.6 0 .8l-1 1-2.1-2.1 1-1c.1-.1.2-.2.4-.2m0 3.9L14.1 23H12v-2.1l6.1-6.1 2.1 2.1Z"/></svg>
|
||
</a>
|
||
|
||
|
||
|
||
|
||
<h1 id="142">14.2 动态规划问题特性<a class="headerlink" href="#142" title="Permanent link">¶</a></h1>
|
||
<p>在上节中,我们学习了动态规划是如何通过子问题分解来求解问题的。实际上,子问题分解是一种通用的算法思路,在分治、动态规划、回溯中的侧重点不同。</p>
|
||
<ul>
|
||
<li>分治算法递归地将原问题划分为多个相互独立的子问题,直至最小子问题,并在回溯中合并子问题的解,最终得到原问题的解。</li>
|
||
<li>动态规划也对问题进行递归分解,但与分治算法的主要区别是,动态规划中的子问题是相互依赖的,在分解过程中会出现许多重叠子问题。</li>
|
||
<li>回溯算法在尝试和回退中穷举所有可能的解,并通过剪枝避免不必要的搜索分支。原问题的解由一系列决策步骤构成,我们可以将每个决策步骤之前的子序列看作为一个子问题。</li>
|
||
</ul>
|
||
<p>实际上,动态规划常用来求解最优化问题,它们不仅包含重叠子问题,还具有另外两大特性:最优子结构、无后效性。</p>
|
||
<h2 id="1421">14.2.1 最优子结构<a class="headerlink" href="#1421" title="Permanent link">¶</a></h2>
|
||
<p>我们对爬楼梯问题稍作改动,使之更加适合展示最优子结构概念。</p>
|
||
<div class="admonition question">
|
||
<p class="admonition-title">爬楼梯最小代价</p>
|
||
<p>给定一个楼梯,你每步可以上 <span class="arithmatex">\(1\)</span> 阶或者 <span class="arithmatex">\(2\)</span> 阶,每一阶楼梯上都贴有一个非负整数,表示你在该台阶所需要付出的代价。给定一个非负整数数组 <span class="arithmatex">\(cost\)</span> ,其中 <span class="arithmatex">\(cost[i]\)</span> 表示在第 <span class="arithmatex">\(i\)</span> 个台阶需要付出的代价,<span class="arithmatex">\(cost[0]\)</span> 为地面起始点。请计算最少需要付出多少代价才能到达顶部?</p>
|
||
</div>
|
||
<p>如图 14-6 所示,若第 <span class="arithmatex">\(1\)</span>、<span class="arithmatex">\(2\)</span>、<span class="arithmatex">\(3\)</span> 阶的代价分别为 <span class="arithmatex">\(1\)</span>、<span class="arithmatex">\(10\)</span>、<span class="arithmatex">\(1\)</span> ,则从地面爬到第 <span class="arithmatex">\(3\)</span> 阶的最小代价为 <span class="arithmatex">\(2\)</span> 。</p>
|
||
<p><img alt="爬到第 3 阶的最小代价" src="../dp_problem_features.assets/min_cost_cs_example.png" /></p>
|
||
<p align="center"> 图 14-6 爬到第 3 阶的最小代价 </p>
|
||
|
||
<p>设 <span class="arithmatex">\(dp[i]\)</span> 为爬到第 <span class="arithmatex">\(i\)</span> 阶累计付出的代价,由于第 <span class="arithmatex">\(i\)</span> 阶只可能从 <span class="arithmatex">\(i - 1\)</span> 阶或 <span class="arithmatex">\(i - 2\)</span> 阶走来,因此 <span class="arithmatex">\(dp[i]\)</span> 只可能等于 <span class="arithmatex">\(dp[i - 1] + cost[i]\)</span> 或 <span class="arithmatex">\(dp[i - 2] + cost[i]\)</span> 。为了尽可能减少代价,我们应该选择两者中较小的那一个:</p>
|
||
<div class="arithmatex">\[
|
||
dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
|
||
\]</div>
|
||
<p>这便可以引出最优子结构的含义:<strong>原问题的最优解是从子问题的最优解构建得来的</strong>。</p>
|
||
<p>本题显然具有最优子结构:我们从两个子问题最优解 <span class="arithmatex">\(dp[i-1]\)</span> 和 <span class="arithmatex">\(dp[i-2]\)</span> 中挑选出较优的那一个,并用它构建出原问题 <span class="arithmatex">\(dp[i]\)</span> 的最优解。</p>
|
||
<p>那么,上节的爬楼梯题目有没有最优子结构呢?它的目标是求解方案数量,看似是一个计数问题,但如果换一种问法:“求解最大方案数量”。我们意外地发现,<strong>虽然题目修改前后是等价的,但最优子结构浮现出来了</strong>:第 <span class="arithmatex">\(n\)</span> 阶最大方案数量等于第 <span class="arithmatex">\(n-1\)</span> 阶和第 <span class="arithmatex">\(n-2\)</span> 阶最大方案数量之和。所以说,最优子结构的解释方式比较灵活,在不同问题中会有不同的含义。</p>
|
||
<p>根据状态转移方程,以及初始状态 <span class="arithmatex">\(dp[1] = cost[1]\)</span> 和 <span class="arithmatex">\(dp[2] = cost[2]\)</span> ,我们就可以得到动态规划代码。</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="1:12"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JS</label><label for="__tabbed_1_6">TS</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label><label for="__tabbed_1_12">Rust</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.java</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minCostClimbingStairsDP</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="na">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
|
||
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="o">[</span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="o">[</span><span class="mi">2</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">min</span><span class="p">(</span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minCostClimbingStairsDP</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
|
||
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.py</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="k">def</span> <span class="nf">min_cost_climbing_stairs_dp</span><span class="p">(</span><span class="n">cost</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="w"> </span><span class="sd">"""爬楼梯最小代价:动态规划"""</span>
|
||
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">cost</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
|
||
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
|
||
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a> <span class="k">return</span> <span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
|
||
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a> <span class="c1"># 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a> <span class="c1"># 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a> <span class="c1"># 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
||
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">2</span><span class="p">])</span> <span class="o">+</span> <span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
|
||
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.go</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">minCostClimbingStairsDP</span><span class="p">(</span><span class="nx">cost</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">cost</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">]</span>
|
||
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
|
||
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">int</span><span class="p">(</span><span class="nx">math</span><span class="p">.</span><span class="nx">Min</span><span class="p">(</span><span class="nb">float64</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]),</span><span class="w"> </span><span class="nb">float64</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span><span class="o">+</span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">])))</span>
|
||
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">]</span>
|
||
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDP</span><span class="p">(</span><span class="nx">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">];</span>
|
||
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDP</span><span class="p">(</span><span class="nx">cost</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">];</span>
|
||
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.c</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minCostClimbingStairsDP</span><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.cs</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minCostClimbingStairsDP</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">Length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span>
|
||
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
|
||
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="m">1</span><span class="p">];</span>
|
||
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.swift</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kd">func</span> <span class="nf">minCostClimbingStairsDP</span><span class="p">(</span><span class="n">cost</span><span class="p">:</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a> <span class="kd">let</span> <span class="nv">n</span> <span class="p">=</span> <span class="n">cost</span><span class="p">.</span><span class="bp">count</span> <span class="o">-</span> <span class="mi">1</span>
|
||
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a> <span class="k">if</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">1</span> <span class="o">||</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">2</span> <span class="p">{</span>
|
||
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a> <span class="k">return</span> <span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
|
||
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a> <span class="p">}</span>
|
||
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a> <span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a> <span class="kd">var</span> <span class="nv">dp</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a> <span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="p">=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="p">=</span> <span class="mi">2</span>
|
||
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a> <span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="bp">stride</span><span class="p">(</span><span class="n">from</span><span class="p">:</span> <span class="mi">3</span><span class="p">,</span> <span class="n">through</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">by</span><span class="p">:</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="p">=</span> <span class="bp">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">2</span><span class="p">])</span> <span class="o">+</span> <span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
|
||
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a> <span class="p">}</span>
|
||
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
|
||
<a id="__codelineno-8-17" name="__codelineno-8-17" href="#__codelineno-8-17"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.zig</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="c1">// 爬楼梯最小代价:动态规划</span>
|
||
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">minCostClimbingStairsDP</span><span class="p">(</span><span class="kr">comptime</span><span class="w"> </span><span class="n">cost</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="w"> </span><span class="kr">comptime</span><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">len</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="k">or</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-9-5" name="__codelineno-9-5" href="#__codelineno-9-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-9-6" name="__codelineno-9-6" href="#__codelineno-9-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-9-7" name="__codelineno-9-7" href="#__codelineno-9-7"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-9-8" name="__codelineno-9-8" href="#__codelineno-9-8"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[</span><span class="n">_</span><span class="p">]</span><span class="kt">i32</span><span class="p">{</span><span class="o">-</span><span class="mi">1</span><span class="p">}</span><span class="w"> </span><span class="o">**</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||
<a id="__codelineno-9-9" name="__codelineno-9-9" href="#__codelineno-9-9"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-9-10" name="__codelineno-9-10" href="#__codelineno-9-10"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-9-11" name="__codelineno-9-11" href="#__codelineno-9-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-9-12" name="__codelineno-9-12" href="#__codelineno-9-12"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-9-13" name="__codelineno-9-13" href="#__codelineno-9-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">3</span><span class="p">..</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">i</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-9-14" name="__codelineno-9-14" href="#__codelineno-9-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">@min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-9-15" name="__codelineno-9-15" href="#__codelineno-9-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-9-16" name="__codelineno-9-16" href="#__codelineno-9-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-9-17" name="__codelineno-9-17" href="#__codelineno-9-17"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.dart</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">minCostClimbingStairsDP</span><span class="p">(</span><span class="n">List</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="n">List</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">);</span>
|
||
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="m">1</span><span class="p">];</span>
|
||
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-10-14" name="__codelineno-10-14" href="#__codelineno-10-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-10-15" name="__codelineno-10-15" href="#__codelineno-10-15"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.rs</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="k">fn</span> <span class="nf">min_cost_climbing_stairs_dp</span><span class="p">(</span><span class="n">cost</span>: <span class="kp">&</span><span class="p">[</span><span class="kt">i32</span><span class="p">])</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">len</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">];</span><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">3</span><span class="o">..=</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cmp</span>::<span class="n">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
|
||
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<p>图 14-7 展示了以上代码的动态规划过程。</p>
|
||
<p><img alt="爬楼梯最小代价的动态规划过程" src="../dp_problem_features.assets/min_cost_cs_dp.png" /></p>
|
||
<p align="center"> 图 14-7 爬楼梯最小代价的动态规划过程 </p>
|
||
|
||
<p>本题也可以进行空间优化,将一维压缩至零维,使得空间复杂度从 <span class="arithmatex">\(O(n)\)</span> 降低至 <span class="arithmatex">\(O(1)\)</span> 。</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="2:12"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JS</label><label for="__tabbed_2_6">TS</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label><label for="__tabbed_2_12">Rust</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.java</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="cm">/* 爬楼梯最小代价:空间优化后的动态规划 */</span>
|
||
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="na">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
|
||
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="o">[</span><span class="mi">1</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="o">[</span><span class="mi">2</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">min</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="w"> </span><span class="n">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-12-12" name="__codelineno-12-12" href="#__codelineno-12-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-12-13" name="__codelineno-12-13" href="#__codelineno-12-13"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.cpp</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="cm">/* 爬楼梯最小代价:空间优化后的动态规划 */</span>
|
||
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
|
||
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="w"> </span><span class="n">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.py</span><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="k">def</span> <span class="nf">min_cost_climbing_stairs_dp_comp</span><span class="p">(</span><span class="n">cost</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="w"> </span><span class="sd">"""爬楼梯最小代价:空间优化后的动态规划"""</span>
|
||
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">cost</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span>
|
||
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
|
||
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a> <span class="k">return</span> <span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
|
||
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a> <span class="n">a</span><span class="p">,</span> <span class="n">b</span> <span class="o">=</span> <span class="n">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
||
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a> <span class="n">a</span><span class="p">,</span> <span class="n">b</span> <span class="o">=</span> <span class="n">b</span><span class="p">,</span> <span class="nb">min</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span> <span class="o">+</span> <span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
|
||
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a> <span class="k">return</span> <span class="n">b</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.go</span><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="cm">/* 爬楼梯最小代价:空间优化后的动态规划 */</span>
|
||
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="nx">cost</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">cost</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">]</span>
|
||
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="w"> </span><span class="nx">a</span><span class="p">,</span><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">b</span>
|
||
<a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">int</span><span class="p">(</span><span class="nx">math</span><span class="p">.</span><span class="nx">Min</span><span class="p">(</span><span class="nb">float64</span><span class="p">(</span><span class="nx">a</span><span class="p">),</span><span class="w"> </span><span class="nb">float64</span><span class="p">(</span><span class="nx">tmp</span><span class="o">+</span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">])))</span>
|
||
<a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">tmp</span>
|
||
<a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">b</span>
|
||
<a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 爬楼梯最小代价:状态压缩后的动态规划 */</span>
|
||
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="nx">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">],</span>
|
||
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
|
||
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">a</span><span class="p">,</span><span class="w"> </span><span class="nx">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
|
||
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 爬楼梯最小代价:状态压缩后的动态规划 */</span>
|
||
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="nx">cost</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">],</span>
|
||
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
|
||
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">a</span><span class="p">,</span><span class="w"> </span><span class="nx">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
|
||
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.c</span><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minCostClimbingStairsDPComp</span><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.cs</span><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="cm">/* 爬楼梯最小代价:空间优化后的动态规划 */</span>
|
||
<a id="__codelineno-19-2" name="__codelineno-19-2" href="#__codelineno-19-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-19-3" name="__codelineno-19-3" href="#__codelineno-19-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">Length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-19-4" name="__codelineno-19-4" href="#__codelineno-19-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span>
|
||
<a id="__codelineno-19-5" name="__codelineno-19-5" href="#__codelineno-19-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-19-6" name="__codelineno-19-6" href="#__codelineno-19-6"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-19-7" name="__codelineno-19-7" href="#__codelineno-19-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-19-8" name="__codelineno-19-8" href="#__codelineno-19-8"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-19-9" name="__codelineno-19-9" href="#__codelineno-19-9"></a><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="w"> </span><span class="n">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-19-10" name="__codelineno-19-10" href="#__codelineno-19-10"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-19-11" name="__codelineno-19-11" href="#__codelineno-19-11"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-19-12" name="__codelineno-19-12" href="#__codelineno-19-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-19-13" name="__codelineno-19-13" href="#__codelineno-19-13"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.swift</span><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="cm">/* 爬楼梯最小代价:空间优化后的动态规划 */</span>
|
||
<a id="__codelineno-20-2" name="__codelineno-20-2" href="#__codelineno-20-2"></a><span class="kd">func</span> <span class="nf">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="n">cost</span><span class="p">:</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-20-3" name="__codelineno-20-3" href="#__codelineno-20-3"></a> <span class="kd">let</span> <span class="nv">n</span> <span class="p">=</span> <span class="n">cost</span><span class="p">.</span><span class="bp">count</span> <span class="o">-</span> <span class="mi">1</span>
|
||
<a id="__codelineno-20-4" name="__codelineno-20-4" href="#__codelineno-20-4"></a> <span class="k">if</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">1</span> <span class="o">||</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">2</span> <span class="p">{</span>
|
||
<a id="__codelineno-20-5" name="__codelineno-20-5" href="#__codelineno-20-5"></a> <span class="k">return</span> <span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">]</span>
|
||
<a id="__codelineno-20-6" name="__codelineno-20-6" href="#__codelineno-20-6"></a> <span class="p">}</span>
|
||
<a id="__codelineno-20-7" name="__codelineno-20-7" href="#__codelineno-20-7"></a> <span class="kd">var</span> <span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span> <span class="p">=</span> <span class="p">(</span><span class="n">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span>
|
||
<a id="__codelineno-20-8" name="__codelineno-20-8" href="#__codelineno-20-8"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="bp">stride</span><span class="p">(</span><span class="n">from</span><span class="p">:</span> <span class="mi">3</span><span class="p">,</span> <span class="n">through</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">by</span><span class="p">:</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-20-9" name="__codelineno-20-9" href="#__codelineno-20-9"></a> <span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span> <span class="p">=</span> <span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="bp">min</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span> <span class="o">+</span> <span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
|
||
<a id="__codelineno-20-10" name="__codelineno-20-10" href="#__codelineno-20-10"></a> <span class="p">}</span>
|
||
<a id="__codelineno-20-11" name="__codelineno-20-11" href="#__codelineno-20-11"></a> <span class="k">return</span> <span class="n">b</span>
|
||
<a id="__codelineno-20-12" name="__codelineno-20-12" href="#__codelineno-20-12"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.zig</span><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="c1">// 爬楼梯最小代价:空间优化后的动态规划</span>
|
||
<a id="__codelineno-21-2" name="__codelineno-21-2" href="#__codelineno-21-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="n">cost</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-21-3" name="__codelineno-21-3" href="#__codelineno-21-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">len</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-21-4" name="__codelineno-21-4" href="#__codelineno-21-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="k">or</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-21-5" name="__codelineno-21-5" href="#__codelineno-21-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-21-6" name="__codelineno-21-6" href="#__codelineno-21-6"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-21-7" name="__codelineno-21-7" href="#__codelineno-21-7"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-21-8" name="__codelineno-21-8" href="#__codelineno-21-8"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-21-9" name="__codelineno-21-9" href="#__codelineno-21-9"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-21-10" name="__codelineno-21-10" href="#__codelineno-21-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">3</span><span class="p">..</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">i</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-21-11" name="__codelineno-21-11" href="#__codelineno-21-11"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-21-12" name="__codelineno-21-12" href="#__codelineno-21-12"></a><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">@min</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="w"> </span><span class="n">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-21-13" name="__codelineno-21-13" href="#__codelineno-21-13"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-21-14" name="__codelineno-21-14" href="#__codelineno-21-14"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-21-15" name="__codelineno-21-15" href="#__codelineno-21-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-21-16" name="__codelineno-21-16" href="#__codelineno-21-16"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.dart</span><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="cm">/* 爬楼梯最小代价:空间优化后的动态规划 */</span>
|
||
<a id="__codelineno-22-2" name="__codelineno-22-2" href="#__codelineno-22-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="n">List</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-22-3" name="__codelineno-22-3" href="#__codelineno-22-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-22-4" name="__codelineno-22-4" href="#__codelineno-22-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
|
||
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="w"> </span><span class="n">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-22-9" name="__codelineno-22-9" href="#__codelineno-22-9"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-22-10" name="__codelineno-22-10" href="#__codelineno-22-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-22-11" name="__codelineno-22-11" href="#__codelineno-22-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-22-12" name="__codelineno-22-12" href="#__codelineno-22-12"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.rs</span><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="cm">/* 爬楼梯最小代价:空间优化后的动态规划 */</span>
|
||
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="k">fn</span> <span class="nf">min_cost_climbing_stairs_dp_comp</span><span class="p">(</span><span class="n">cost</span>: <span class="kp">&</span><span class="p">[</span><span class="kt">i32</span><span class="p">])</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cost</span><span class="p">.</span><span class="n">len</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">n</span><span class="p">]</span><span class="w"> </span><span class="p">};</span>
|
||
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="p">(</span><span class="k">mut</span><span class="w"> </span><span class="n">a</span><span class="p">,</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">b</span><span class="p">)</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">cost</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="mi">2</span><span class="p">]);</span>
|
||
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">3</span><span class="o">..=</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">;</span>
|
||
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="n">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cmp</span>::<span class="n">min</span><span class="p">(</span><span class="n">a</span><span class="p">,</span><span class="w"> </span><span class="n">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">cost</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
|
||
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
|
||
<a id="__codelineno-23-10" name="__codelineno-23-10" href="#__codelineno-23-10"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-23-11" name="__codelineno-23-11" href="#__codelineno-23-11"></a><span class="w"> </span><span class="n">b</span>
|
||
<a id="__codelineno-23-12" name="__codelineno-23-12" href="#__codelineno-23-12"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<h2 id="1422">14.2.2 无后效性<a class="headerlink" href="#1422" title="Permanent link">¶</a></h2>
|
||
<p>无后效性是动态规划能够有效解决问题的重要特性之一,定义为:<strong>给定一个确定的状态,它的未来发展只与当前状态有关,而与当前状态过去所经历过的所有状态无关</strong>。</p>
|
||
<p>以爬楼梯问题为例,给定状态 <span class="arithmatex">\(i\)</span> ,它会发展出状态 <span class="arithmatex">\(i+1\)</span> 和状态 <span class="arithmatex">\(i+2\)</span> ,分别对应跳 <span class="arithmatex">\(1\)</span> 步和跳 <span class="arithmatex">\(2\)</span> 步。在做出这两种选择时,我们无须考虑状态 <span class="arithmatex">\(i\)</span> 之前的状态,它们对状态 <span class="arithmatex">\(i\)</span> 的未来没有影响。</p>
|
||
<p>然而,如果我们向爬楼梯问题添加一个约束,情况就不一样了。</p>
|
||
<div class="admonition question">
|
||
<p class="admonition-title">带约束爬楼梯</p>
|
||
<p>给定一个共有 <span class="arithmatex">\(n\)</span> 阶的楼梯,你每步可以上 <span class="arithmatex">\(1\)</span> 阶或者 <span class="arithmatex">\(2\)</span> 阶,<strong>但不能连续两轮跳 <span class="arithmatex">\(1\)</span> 阶</strong>,请问有多少种方案可以爬到楼顶。</p>
|
||
</div>
|
||
<p>例如图 14-8 ,爬上第 <span class="arithmatex">\(3\)</span> 阶仅剩 <span class="arithmatex">\(2\)</span> 种可行方案,其中连续三次跳 <span class="arithmatex">\(1\)</span> 阶的方案不满足约束条件,因此被舍弃。</p>
|
||
<p><img alt="带约束爬到第 3 阶的方案数量" src="../dp_problem_features.assets/climbing_stairs_constraint_example.png" /></p>
|
||
<p align="center"> 图 14-8 带约束爬到第 3 阶的方案数量 </p>
|
||
|
||
<p>在该问题中,如果上一轮是跳 <span class="arithmatex">\(1\)</span> 阶上来的,那么下一轮就必须跳 <span class="arithmatex">\(2\)</span> 阶。这意味着,<strong>下一步选择不能由当前状态(当前楼梯阶数)独立决定,还和前一个状态(上轮楼梯阶数)有关</strong>。</p>
|
||
<p>不难发现,此问题已不满足无后效性,状态转移方程 <span class="arithmatex">\(dp[i] = dp[i-1] + dp[i-2]\)</span> 也失效了,因为 <span class="arithmatex">\(dp[i-1]\)</span> 代表本轮跳 <span class="arithmatex">\(1\)</span> 阶,但其中包含了许多“上一轮跳 <span class="arithmatex">\(1\)</span> 阶上来的”方案,而为了满足约束,我们就不能将 <span class="arithmatex">\(dp[i-1]\)</span> 直接计入 <span class="arithmatex">\(dp[i]\)</span> 中。</p>
|
||
<p>为此,我们需要扩展状态定义:<strong>状态 <span class="arithmatex">\([i, j]\)</span> 表示处在第 <span class="arithmatex">\(i\)</span> 阶、并且上一轮跳了 <span class="arithmatex">\(j\)</span> 阶</strong>,其中 <span class="arithmatex">\(j \in \{1, 2\}\)</span> 。此状态定义有效地区分了上一轮跳了 <span class="arithmatex">\(1\)</span> 阶还是 <span class="arithmatex">\(2\)</span> 阶,我们可以据此来决定下一步该怎么跳。</p>
|
||
<ul>
|
||
<li>当 <span class="arithmatex">\(j\)</span> 等于 <span class="arithmatex">\(1\)</span> ,即上一轮跳了 <span class="arithmatex">\(1\)</span> 阶时,这一轮只能选择跳 <span class="arithmatex">\(2\)</span> 阶。</li>
|
||
<li>当 <span class="arithmatex">\(j\)</span> 等于 <span class="arithmatex">\(2\)</span> ,即上一轮跳了 <span class="arithmatex">\(2\)</span> 阶时,这一轮可选择跳 <span class="arithmatex">\(1\)</span> 阶或跳 <span class="arithmatex">\(2\)</span> 阶。</li>
|
||
</ul>
|
||
<p>如图 14-9 所示,在该定义下,<span class="arithmatex">\(dp[i, j]\)</span> 表示状态 <span class="arithmatex">\([i, j]\)</span> 对应的方案数。此时状态转移方程为:</p>
|
||
<div class="arithmatex">\[
|
||
\begin{cases}
|
||
dp[i, 1] = dp[i-1, 2] \\
|
||
dp[i, 2] = dp[i-2, 1] + dp[i-2, 2]
|
||
\end{cases}
|
||
\]</div>
|
||
<p><img alt="考虑约束下的递推关系" src="../dp_problem_features.assets/climbing_stairs_constraint_state_transfer.png" /></p>
|
||
<p align="center"> 图 14-9 考虑约束下的递推关系 </p>
|
||
|
||
<p>最终,返回 <span class="arithmatex">\(dp[n, 1] + dp[n, 2]\)</span> 即可,两者之和代表爬到第 <span class="arithmatex">\(n\)</span> 阶的方案总数。</p>
|
||
<div class="tabbed-set tabbed-alternate" data-tabs="3:12"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JS</label><label for="__tabbed_3_6">TS</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label><label for="__tabbed_3_9">Swift</label><label for="__tabbed_3_10">Zig</label><label for="__tabbed_3_11">Dart</label><label for="__tabbed_3_12">Rust</label></div>
|
||
<div class="tabbed-content">
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.java</span><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsConstraintDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a><span class="w"> </span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="mi">3</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-24-8" name="__codelineno-24-8" href="#__codelineno-24-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-24-9" name="__codelineno-24-9" href="#__codelineno-24-9"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">1</span><span class="o">][</span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-24-10" name="__codelineno-24-10" href="#__codelineno-24-10"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">1</span><span class="o">][</span><span class="mi">2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-24-11" name="__codelineno-24-11" href="#__codelineno-24-11"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">2</span><span class="o">][</span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-24-12" name="__codelineno-24-12" href="#__codelineno-24-12"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">2</span><span class="o">][</span><span class="mi">2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-24-13" name="__codelineno-24-13" href="#__codelineno-24-13"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-24-14" name="__codelineno-24-14" href="#__codelineno-24-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-24-15" name="__codelineno-24-15" href="#__codelineno-24-15"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="mi">2</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-24-16" name="__codelineno-24-16" href="#__codelineno-24-16"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="mi">2</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="o">][</span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="o">][</span><span class="mi">2</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-24-17" name="__codelineno-24-17" href="#__codelineno-24-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-24-18" name="__codelineno-24-18" href="#__codelineno-24-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">n</span><span class="o">][</span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">n</span><span class="o">][</span><span class="mi">2</span><span class="o">]</span><span class="p">;</span>
|
||
<a id="__codelineno-24-19" name="__codelineno-24-19" href="#__codelineno-24-19"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.cpp</span><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsConstraintDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-25-3" name="__codelineno-25-3" href="#__codelineno-25-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-25-4" name="__codelineno-25-4" href="#__codelineno-25-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||
<a id="__codelineno-25-5" name="__codelineno-25-5" href="#__codelineno-25-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-25-6" name="__codelineno-25-6" href="#__codelineno-25-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-25-7" name="__codelineno-25-7" href="#__codelineno-25-7"></a><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="p">(</span><span class="mi">3</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">));</span>
|
||
<a id="__codelineno-25-8" name="__codelineno-25-8" href="#__codelineno-25-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-25-9" name="__codelineno-25-9" href="#__codelineno-25-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-25-10" name="__codelineno-25-10" href="#__codelineno-25-10"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-25-11" name="__codelineno-25-11" href="#__codelineno-25-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-25-12" name="__codelineno-25-12" href="#__codelineno-25-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-25-13" name="__codelineno-25-13" href="#__codelineno-25-13"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-25-14" name="__codelineno-25-14" href="#__codelineno-25-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-25-15" name="__codelineno-25-15" href="#__codelineno-25-15"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-25-16" name="__codelineno-25-16" href="#__codelineno-25-16"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-25-17" name="__codelineno-25-17" href="#__codelineno-25-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-25-18" name="__codelineno-25-18" href="#__codelineno-25-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-25-19" name="__codelineno-25-19" href="#__codelineno-25-19"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.py</span><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="k">def</span> <span class="nf">climbing_stairs_constraint_dp</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
||
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a><span class="w"> </span><span class="sd">"""带约束爬楼梯:动态规划"""</span>
|
||
<a id="__codelineno-26-3" name="__codelineno-26-3" href="#__codelineno-26-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
|
||
<a id="__codelineno-26-4" name="__codelineno-26-4" href="#__codelineno-26-4"></a> <span class="k">return</span> <span class="n">n</span>
|
||
<a id="__codelineno-26-5" name="__codelineno-26-5" href="#__codelineno-26-5"></a> <span class="c1"># 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-26-6" name="__codelineno-26-6" href="#__codelineno-26-6"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="mi">3</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)]</span>
|
||
<a id="__codelineno-26-7" name="__codelineno-26-7" href="#__codelineno-26-7"></a> <span class="c1"># 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-26-8" name="__codelineno-26-8" href="#__codelineno-26-8"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span>
|
||
<a id="__codelineno-26-9" name="__codelineno-26-9" href="#__codelineno-26-9"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span>
|
||
<a id="__codelineno-26-10" name="__codelineno-26-10" href="#__codelineno-26-10"></a> <span class="c1"># 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-26-11" name="__codelineno-26-11" href="#__codelineno-26-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
||
<a id="__codelineno-26-12" name="__codelineno-26-12" href="#__codelineno-26-12"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-26-13" name="__codelineno-26-13" href="#__codelineno-26-13"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-26-14" name="__codelineno-26-14" href="#__codelineno-26-14"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.go</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">climbingStairsConstraintDP</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-27-3" name="__codelineno-27-3" href="#__codelineno-27-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-27-4" name="__codelineno-27-4" href="#__codelineno-27-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span>
|
||
<a id="__codelineno-27-5" name="__codelineno-27-5" href="#__codelineno-27-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-27-6" name="__codelineno-27-6" href="#__codelineno-27-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-27-7" name="__codelineno-27-7" href="#__codelineno-27-7"></a><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][</span><span class="mi">3</span><span class="p">]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-27-8" name="__codelineno-27-8" href="#__codelineno-27-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-27-9" name="__codelineno-27-9" href="#__codelineno-27-9"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-27-10" name="__codelineno-27-10" href="#__codelineno-27-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="mi">0</span>
|
||
<a id="__codelineno-27-11" name="__codelineno-27-11" href="#__codelineno-27-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="mi">0</span>
|
||
<a id="__codelineno-27-12" name="__codelineno-27-12" href="#__codelineno-27-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="mi">1</span>
|
||
<a id="__codelineno-27-13" name="__codelineno-27-13" href="#__codelineno-27-13"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-27-14" name="__codelineno-27-14" href="#__codelineno-27-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-27-15" name="__codelineno-27-15" href="#__codelineno-27-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-27-16" name="__codelineno-27-16" href="#__codelineno-27-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="o">-</span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-27-17" name="__codelineno-27-17" href="#__codelineno-27-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-27-18" name="__codelineno-27-18" href="#__codelineno-27-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-27-19" name="__codelineno-27-19" href="#__codelineno-27-19"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsConstraintDP</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
|
||
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">(</span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">),</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">3</span><span class="p">));</span>
|
||
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-28-16" name="__codelineno-28-16" href="#__codelineno-28-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-28-17" name="__codelineno-28-17" href="#__codelineno-28-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-28-18" name="__codelineno-28-18" href="#__codelineno-28-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-28-19" name="__codelineno-28-19" href="#__codelineno-28-19"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsConstraintDP</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
|
||
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">(</span>
|
||
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span>
|
||
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">3</span><span class="p">)</span>
|
||
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="p">);</span>
|
||
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.c</span><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">climbingStairsConstraintDP</span><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.cs</span><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||
<a id="__codelineno-31-2" name="__codelineno-31-2" href="#__codelineno-31-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsConstraintDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-31-3" name="__codelineno-31-3" href="#__codelineno-31-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-31-4" name="__codelineno-31-4" href="#__codelineno-31-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||
<a id="__codelineno-31-5" name="__codelineno-31-5" href="#__codelineno-31-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-31-6" name="__codelineno-31-6" href="#__codelineno-31-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-31-7" name="__codelineno-31-7" href="#__codelineno-31-7"></a><span class="w"> </span><span class="kt">int</span><span class="p">[,]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">3</span><span class="p">];</span>
|
||
<a id="__codelineno-31-8" name="__codelineno-31-8" href="#__codelineno-31-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-31-9" name="__codelineno-31-9" href="#__codelineno-31-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-31-10" name="__codelineno-31-10" href="#__codelineno-31-10"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-31-11" name="__codelineno-31-11" href="#__codelineno-31-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">2</span><span class="p">,</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-31-12" name="__codelineno-31-12" href="#__codelineno-31-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">2</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-31-13" name="__codelineno-31-13" href="#__codelineno-31-13"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-31-14" name="__codelineno-31-14" href="#__codelineno-31-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-31-15" name="__codelineno-31-15" href="#__codelineno-31-15"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-31-16" name="__codelineno-31-16" href="#__codelineno-31-16"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">2</span><span class="p">,</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">2</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-31-17" name="__codelineno-31-17" href="#__codelineno-31-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-31-18" name="__codelineno-31-18" href="#__codelineno-31-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-31-19" name="__codelineno-31-19" href="#__codelineno-31-19"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.swift</span><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||
<a id="__codelineno-32-2" name="__codelineno-32-2" href="#__codelineno-32-2"></a><span class="kd">func</span> <span class="nf">climbingStairsConstraintDP</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-></span> <span class="nb">Int</span> <span class="p">{</span>
|
||
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">1</span> <span class="o">||</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">2</span> <span class="p">{</span>
|
||
<a id="__codelineno-32-4" name="__codelineno-32-4" href="#__codelineno-32-4"></a> <span class="k">return</span> <span class="n">n</span>
|
||
<a id="__codelineno-32-5" name="__codelineno-32-5" href="#__codelineno-32-5"></a> <span class="p">}</span>
|
||
<a id="__codelineno-32-6" name="__codelineno-32-6" href="#__codelineno-32-6"></a> <span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-32-7" name="__codelineno-32-7" href="#__codelineno-32-7"></a> <span class="kd">var</span> <span class="nv">dp</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">3</span><span class="p">),</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
|
||
<a id="__codelineno-32-8" name="__codelineno-32-8" href="#__codelineno-32-8"></a> <span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-32-9" name="__codelineno-32-9" href="#__codelineno-32-9"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="p">=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-32-10" name="__codelineno-32-10" href="#__codelineno-32-10"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span> <span class="p">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-32-11" name="__codelineno-32-11" href="#__codelineno-32-11"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="p">=</span> <span class="mi">0</span>
|
||
<a id="__codelineno-32-12" name="__codelineno-32-12" href="#__codelineno-32-12"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span> <span class="p">=</span> <span class="mi">1</span>
|
||
<a id="__codelineno-32-13" name="__codelineno-32-13" href="#__codelineno-32-13"></a> <span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-32-14" name="__codelineno-32-14" href="#__codelineno-32-14"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="bp">stride</span><span class="p">(</span><span class="n">from</span><span class="p">:</span> <span class="mi">3</span><span class="p">,</span> <span class="n">through</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">by</span><span class="p">:</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
|
||
<a id="__codelineno-32-15" name="__codelineno-32-15" href="#__codelineno-32-15"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="p">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-32-16" name="__codelineno-32-16" href="#__codelineno-32-16"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span> <span class="p">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-32-17" name="__codelineno-32-17" href="#__codelineno-32-17"></a> <span class="p">}</span>
|
||
<a id="__codelineno-32-18" name="__codelineno-32-18" href="#__codelineno-32-18"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-32-19" name="__codelineno-32-19" href="#__codelineno-32-19"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.zig</span><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="c1">// 带约束爬楼梯:动态规划</span>
|
||
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">climbingStairsConstraintDP</span><span class="p">(</span><span class="kr">comptime</span><span class="w"> </span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="k">or</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="n">n</span><span class="p">);</span>
|
||
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[</span><span class="n">_</span><span class="p">][</span><span class="mi">3</span><span class="p">]</span><span class="kt">i32</span><span class="p">{</span><span class="w"> </span><span class="p">[</span><span class="n">_</span><span class="p">]</span><span class="kt">i32</span><span class="p">{</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="o">**</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-33-9" name="__codelineno-33-9" href="#__codelineno-33-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-33-10" name="__codelineno-33-10" href="#__codelineno-33-10"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-33-11" name="__codelineno-33-11" href="#__codelineno-33-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-33-12" name="__codelineno-33-12" href="#__codelineno-33-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-33-13" name="__codelineno-33-13" href="#__codelineno-33-13"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-33-14" name="__codelineno-33-14" href="#__codelineno-33-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">3</span><span class="p">..</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">i</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-33-15" name="__codelineno-33-15" href="#__codelineno-33-15"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-33-16" name="__codelineno-33-16" href="#__codelineno-33-16"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-33-17" name="__codelineno-33-17" href="#__codelineno-33-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-33-18" name="__codelineno-33-18" href="#__codelineno-33-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-33-19" name="__codelineno-33-19" href="#__codelineno-33-19"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.dart</span><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">climbingStairsConstraintDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="n">List</span><span class="o"><</span><span class="n">List</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">generate</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="n">index</span><span class="p">)</span><span class="w"> </span><span class="o">=></span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="m">3</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">));</span>
|
||
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-34-9" name="__codelineno-34-9" href="#__codelineno-34-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">1</span><span class="p">][</span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-34-10" name="__codelineno-34-10" href="#__codelineno-34-10"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">1</span><span class="p">][</span><span class="m">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-34-11" name="__codelineno-34-11" href="#__codelineno-34-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">2</span><span class="p">][</span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
|
||
<a id="__codelineno-34-12" name="__codelineno-34-12" href="#__codelineno-34-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">2</span><span class="p">][</span><span class="m">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||
<a id="__codelineno-34-13" name="__codelineno-34-13" href="#__codelineno-34-13"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-34-14" name="__codelineno-34-14" href="#__codelineno-34-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-34-15" name="__codelineno-34-15" href="#__codelineno-34-15"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">][</span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-34-16" name="__codelineno-34-16" href="#__codelineno-34-16"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="m">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">2</span><span class="p">][</span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">2</span><span class="p">][</span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-34-17" name="__codelineno-34-17" href="#__codelineno-34-17"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-34-18" name="__codelineno-34-18" href="#__codelineno-34-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="m">2</span><span class="p">];</span>
|
||
<a id="__codelineno-34-19" name="__codelineno-34-19" href="#__codelineno-34-19"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
<div class="tabbed-block">
|
||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.rs</span><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="k">fn</span> <span class="nf">climbing_stairs_constraint_dp</span><span class="p">(</span><span class="n">n</span>: <span class="kt">usize</span><span class="p">)</span><span class="w"> </span>-> <span class="kt">i32</span> <span class="p">{</span>
|
||
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">};</span>
|
||
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="fm">vec!</span><span class="p">[</span><span class="fm">vec!</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="mi">3</span><span class="p">];</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
||
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-35-9" name="__codelineno-35-9" href="#__codelineno-35-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
||
<a id="__codelineno-35-10" name="__codelineno-35-10" href="#__codelineno-35-10"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||
<a id="__codelineno-35-11" name="__codelineno-35-11" href="#__codelineno-35-11"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||
<a id="__codelineno-35-12" name="__codelineno-35-12" href="#__codelineno-35-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">3</span><span class="o">..=</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
|
||
<a id="__codelineno-35-13" name="__codelineno-35-13" href="#__codelineno-35-13"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-35-14" name="__codelineno-35-14" href="#__codelineno-35-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">][</span><span class="mi">2</span><span class="p">];</span>
|
||
<a id="__codelineno-35-15" name="__codelineno-35-15" href="#__codelineno-35-15"></a><span class="w"> </span><span class="p">}</span>
|
||
<a id="__codelineno-35-16" name="__codelineno-35-16" href="#__codelineno-35-16"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="mi">2</span><span class="p">]</span>
|
||
<a id="__codelineno-35-17" name="__codelineno-35-17" href="#__codelineno-35-17"></a><span class="p">}</span>
|
||
</code></pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<p>在上面的案例中,由于仅需多考虑前面一个状态,我们仍然可以通过扩展状态定义,使得问题重新满足无后效性。然而,某些问题具有非常严重的“有后效性”。</p>
|
||
<div class="admonition question">
|
||
<p class="admonition-title">爬楼梯与障碍生成</p>
|
||
<p>给定一个共有 <span class="arithmatex">\(n\)</span> 阶的楼梯,你每步可以上 <span class="arithmatex">\(1\)</span> 阶或者 <span class="arithmatex">\(2\)</span> 阶。<strong>规定当爬到第 <span class="arithmatex">\(i\)</span> 阶时,系统自动会给第 <span class="arithmatex">\(2i\)</span> 阶上放上障碍物,之后所有轮都不允许跳到第 <span class="arithmatex">\(2i\)</span> 阶上</strong>。例如,前两轮分别跳到了第 <span class="arithmatex">\(2\)</span>、<span class="arithmatex">\(3\)</span> 阶上,则之后就不能跳到第 <span class="arithmatex">\(4\)</span>、<span class="arithmatex">\(6\)</span> 阶上。请问有多少种方案可以爬到楼顶。</p>
|
||
</div>
|
||
<p>在这个问题中,下次跳跃依赖于过去所有的状态,因为每一次跳跃都会在更高的阶梯上设置障碍,并影响未来的跳跃。对于这类问题,动态规划往往难以解决。</p>
|
||
<p>实际上,许多复杂的组合优化问题(例如旅行商问题)都不满足无后效性。对于这类问题,我们通常会选择使用其他方法,例如启发式搜索、遗传算法、强化学习等,从而在有限时间内得到可用的局部最优解。</p>
|
||
|
||
|
||
|
||
|
||
|
||
<h2 id="__comments">评论</h2>
|
||
<!-- Insert generated snippet here -->
|
||
<script
|
||
src="https://giscus.app/client.js"
|
||
data-repo="krahets/hello-algo"
|
||
data-repo-id="R_kgDOIXtSqw"
|
||
data-category="Announcements"
|
||
data-category-id="DIC_kwDOIXtSq84CSZk_"
|
||
data-mapping="pathname"
|
||
data-strict="1"
|
||
data-reactions-enabled="1"
|
||
data-emit-metadata="0"
|
||
data-input-position="top"
|
||
data-theme="preferred_color_scheme"
|
||
data-lang="zh-CN"
|
||
crossorigin="anonymous"
|
||
async
|
||
>
|
||
</script>
|
||
<!-- Synchronize Giscus theme with palette -->
|
||
<script>
|
||
var giscus = document.querySelector("script[src*=giscus]")
|
||
|
||
/* Set palette on initial load */
|
||
var palette = __md_get("__palette")
|
||
if (palette && typeof palette.color === "object") {
|
||
var theme = palette.color.scheme === "slate" ? "dark" : "light"
|
||
giscus.setAttribute("data-theme", theme)
|
||
}
|
||
|
||
/* Register event handlers after documented loaded */
|
||
document.addEventListener("DOMContentLoaded", function() {
|
||
var ref = document.querySelector("[data-md-component=palette]")
|
||
ref.addEventListener("change", function() {
|
||
var palette = __md_get("__palette")
|
||
if (palette && typeof palette.color === "object") {
|
||
var theme = palette.color.scheme === "slate" ? "dark" : "light"
|
||
|
||
/* Instruct Giscus to change theme */
|
||
var frame = document.querySelector(".giscus-frame")
|
||
frame.contentWindow.postMessage(
|
||
{ giscus: { setConfig: { theme } } },
|
||
"https://giscus.app"
|
||
)
|
||
}
|
||
})
|
||
})
|
||
</script>
|
||
|
||
|
||
</article>
|
||
</div>
|
||
|
||
|
||
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
|
||
|
||
</div>
|
||
|
||
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
|
||
回到页面顶部
|
||
</button>
|
||
|
||
</main>
|
||
|
||
<footer class="md-footer">
|
||
|
||
|
||
|
||
<nav class="md-footer__inner md-grid" aria-label="页脚" >
|
||
|
||
|
||
<a href="../intro_to_dynamic_programming/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 14.1 &nbsp; 初探动态规划" rel="prev">
|
||
<div class="md-footer__button md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
||
</div>
|
||
<div class="md-footer__title">
|
||
<span class="md-footer__direction">
|
||
上一页
|
||
</span>
|
||
<div class="md-ellipsis">
|
||
14.1 初探动态规划
|
||
</div>
|
||
</div>
|
||
</a>
|
||
|
||
|
||
|
||
<a href="../dp_solution_pipeline/" class="md-footer__link md-footer__link--next" aria-label="下一页: 14.3 &nbsp; DP 解题思路" rel="next">
|
||
<div class="md-footer__title">
|
||
<span class="md-footer__direction">
|
||
下一页
|
||
</span>
|
||
<div class="md-ellipsis">
|
||
14.3 DP 解题思路
|
||
</div>
|
||
</div>
|
||
<div class="md-footer__button md-icon">
|
||
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
|
||
</div>
|
||
</a>
|
||
|
||
</nav>
|
||
|
||
|
||
<div class="md-footer-meta md-typeset">
|
||
<div class="md-footer-meta__inner md-grid">
|
||
<div class="md-copyright">
|
||
|
||
<div class="md-copyright__highlight">
|
||
Copyright © 2023 Krahets
|
||
</div>
|
||
|
||
|
||
</div>
|
||
|
||
<div class="md-social">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
||
</a>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
|
||
</a>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
|
||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
|
||
</a>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
</div>
|
||
</footer>
|
||
|
||
</div>
|
||
<div class="md-dialog" data-md-component="dialog">
|
||
<div class="md-dialog__inner md-typeset"></div>
|
||
</div>
|
||
|
||
<script id="__config" type="application/json">{"base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.instant", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.780af0f4.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
|
||
|
||
|
||
<script src="../../assets/javascripts/bundle.f11ae8b1.min.js"></script>
|
||
|
||
|
||
<script src="../../javascripts/mathjax.js"></script>
|
||
|
||
|
||
|
||
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||
|
||
|
||
|
||
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||
|
||
|
||
|
||
</body>
|
||
</html> |