mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 01:36:29 +08:00
211 lines
7.3 KiB
Python
211 lines
7.3 KiB
Python
"""
|
||
File: avl_tree.py
|
||
Created Time: 2022-12-20
|
||
Author: a16su (lpluls001@gmail.com)
|
||
"""
|
||
|
||
import sys, os.path as osp
|
||
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
|
||
from modules import *
|
||
|
||
class AVLTree:
|
||
""" AVL 树 """
|
||
def __init__(self, root: Optional[TreeNode] = None):
|
||
""" 构造方法 """
|
||
self.__root = root
|
||
|
||
@property
|
||
def root(self) -> Optional[TreeNode]:
|
||
return self.__root
|
||
|
||
def height(self, node: Optional[TreeNode]) -> int:
|
||
""" 获取结点高度 """
|
||
# 空结点高度为 -1 ,叶结点高度为 0
|
||
if node is not None:
|
||
return node.height
|
||
return -1
|
||
|
||
def __update_height(self, node: Optional[TreeNode]):
|
||
""" 更新结点高度 """
|
||
# 结点高度等于最高子树高度 + 1
|
||
node.height = max([self.height(node.left), self.height(node.right)]) + 1
|
||
|
||
def balance_factor(self, node: Optional[TreeNode]) -> int:
|
||
""" 获取平衡因子 """
|
||
# 空结点平衡因子为 0
|
||
if node is None:
|
||
return 0
|
||
# 结点平衡因子 = 左子树高度 - 右子树高度
|
||
return self.height(node.left) - self.height(node.right)
|
||
|
||
def __right_rotate(self, node: Optional[TreeNode]) -> Optional[TreeNode]:
|
||
""" 右旋操作 """
|
||
child = node.left
|
||
grand_child = child.right
|
||
# 以 child 为原点,将 node 向右旋转
|
||
child.right = node
|
||
node.left = grand_child
|
||
# 更新结点高度
|
||
self.__update_height(node)
|
||
self.__update_height(child)
|
||
# 返回旋转后子树的根结点
|
||
return child
|
||
|
||
def __left_rotate(self, node: Optional[TreeNode]) -> Optional[TreeNode]:
|
||
""" 左旋操作 """
|
||
child = node.right
|
||
grand_child = child.left
|
||
# 以 child 为原点,将 node 向左旋转
|
||
child.left = node
|
||
node.right = grand_child
|
||
# 更新结点高度
|
||
self.__update_height(node)
|
||
self.__update_height(child)
|
||
# 返回旋转后子树的根结点
|
||
return child
|
||
|
||
def __rotate(self, node: Optional[TreeNode]) -> Optional[TreeNode]:
|
||
""" 执行旋转操作,使该子树重新恢复平衡 """
|
||
# 获取结点 node 的平衡因子
|
||
balance_factor = self.balance_factor(node)
|
||
# 左偏树
|
||
if balance_factor > 1:
|
||
if self.balance_factor(node.left) >= 0:
|
||
# 右旋
|
||
return self.__right_rotate(node)
|
||
else:
|
||
# 先左旋后右旋
|
||
node.left = self.__left_rotate(node.left)
|
||
return self.__right_rotate(node)
|
||
# 右偏树
|
||
elif balance_factor < -1:
|
||
if self.balance_factor(node.right) <= 0:
|
||
# 左旋
|
||
return self.__left_rotate(node)
|
||
else:
|
||
# 先右旋后左旋
|
||
node.right = self.__right_rotate(node.right)
|
||
return self.__left_rotate(node)
|
||
# 平衡树,无需旋转,直接返回
|
||
return node
|
||
|
||
def insert(self, val) -> TreeNode:
|
||
""" 插入结点 """
|
||
self.__root = self.__insert_helper(self.__root, val)
|
||
return self.__root
|
||
|
||
def __insert_helper(self, node: Optional[TreeNode], val: int) -> TreeNode:
|
||
""" 递归插入结点(辅助方法)"""
|
||
if node is None:
|
||
return TreeNode(val)
|
||
# 1. 查找插入位置,并插入结点
|
||
if val < node.val:
|
||
node.left = self.__insert_helper(node.left, val)
|
||
elif val > node.val:
|
||
node.right = self.__insert_helper(node.right, val)
|
||
else:
|
||
# 重复结点不插入,直接返回
|
||
return node
|
||
# 更新结点高度
|
||
self.__update_height(node)
|
||
# 2. 执行旋转操作,使该子树重新恢复平衡
|
||
return self.__rotate(node)
|
||
|
||
def remove(self, val: int) -> Optional[TreeNode]:
|
||
""" 删除结点 """
|
||
self.__root = self.__remove_helper(self.__root, val)
|
||
return self.__root
|
||
|
||
def __remove_helper(self, node: Optional[TreeNode], val: int) -> Optional[TreeNode]:
|
||
""" 递归删除结点(辅助方法) """
|
||
if node is None:
|
||
return None
|
||
# 1. 查找结点,并删除之
|
||
if val < node.val:
|
||
node.left = self.__remove_helper(node.left, val)
|
||
elif val > node.val:
|
||
node.right = self.__remove_helper(node.right, val)
|
||
else:
|
||
if node.left is None or node.right is None:
|
||
child = node.left or node.right
|
||
# 子结点数量 = 0 ,直接删除 node 并返回
|
||
if child is None:
|
||
return None
|
||
# 子结点数量 = 1 ,直接删除 node
|
||
else:
|
||
node = child
|
||
else: # 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
|
||
temp = self.__get_inorder_next(node.right)
|
||
node.right = self.__remove_helper(node.right, temp.val)
|
||
node.val = temp.val
|
||
# 更新结点高度
|
||
self.__update_height(node)
|
||
# 2. 执行旋转操作,使该子树重新恢复平衡
|
||
return self.__rotate(node)
|
||
|
||
def __get_inorder_next(self, node: Optional[TreeNode]) -> Optional[TreeNode]:
|
||
""" 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) """
|
||
if node is None:
|
||
return None
|
||
# 循环访问左子结点,直到叶结点时为最小结点,跳出
|
||
while node.left is not None:
|
||
node = node.left
|
||
return node
|
||
|
||
def search(self, val: int) -> Optional[TreeNode]:
|
||
""" 查找结点 """
|
||
cur = self.__root
|
||
# 循环查找,越过叶结点后跳出
|
||
while cur is not None:
|
||
# 目标结点在 cur 的右子树中
|
||
if cur.val < val:
|
||
cur = cur.right
|
||
# 目标结点在 cur 的左子树中
|
||
elif cur.val > val:
|
||
cur = cur.left
|
||
# 找到目标结点,跳出循环
|
||
else:
|
||
break
|
||
# 返回目标结点
|
||
return cur
|
||
|
||
|
||
""" Driver Code """
|
||
if __name__ == "__main__":
|
||
def test_insert(tree: AVLTree, val: int):
|
||
tree.insert(val)
|
||
print("\n插入结点 {} 后,AVL 树为".format(val))
|
||
print_tree(tree.root)
|
||
|
||
def test_remove(tree: AVLTree, val: int):
|
||
tree.remove(val)
|
||
print("\n删除结点 {} 后,AVL 树为".format(val))
|
||
print_tree(tree.root)
|
||
|
||
# 初始化空 AVL 树
|
||
avl_tree = AVLTree()
|
||
|
||
# 插入结点
|
||
# 请关注插入结点后,AVL 树是如何保持平衡的
|
||
test_insert(avl_tree, 1)
|
||
test_insert(avl_tree, 2)
|
||
test_insert(avl_tree, 3)
|
||
test_insert(avl_tree, 4)
|
||
test_insert(avl_tree, 5)
|
||
test_insert(avl_tree, 8)
|
||
test_insert(avl_tree, 7)
|
||
test_insert(avl_tree, 9)
|
||
test_insert(avl_tree, 10)
|
||
test_insert(avl_tree, 6)
|
||
|
||
# 插入重复结点
|
||
test_insert(avl_tree, 7)
|
||
|
||
# 删除结点
|
||
# 请关注删除结点后,AVL 树是如何保持平衡的
|
||
test_remove(avl_tree, 8) # 删除度为 0 的结点
|
||
test_remove(avl_tree, 5) # 删除度为 1 的结点
|
||
test_remove(avl_tree, 4) # 删除度为 2 的结点
|
||
|
||
result_node = avl_tree.search(7)
|
||
print("\n查找到的结点对象为 {},结点值 = {}".format(result_node, result_node.val))
|