mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 16:46:30 +08:00
4455 lines
No EOL
213 KiB
HTML
4455 lines
No EOL
213 KiB
HTML
|
|
<!doctype html>
|
|
<html lang="en" class="no-js">
|
|
<head>
|
|
|
|
<meta charset="utf-8">
|
|
<meta name="viewport" content="width=device-width,initial-scale=1">
|
|
|
|
<meta name="description" content="Data Structures and Algorithms Crash Course with Animated Illustrations and Off-the-Shelf Code">
|
|
|
|
|
|
<meta name="author" content="krahets">
|
|
|
|
|
|
<link rel="canonical" href="https://www.hello-algo.com/en/chapter_dynamic_programming/knapsack_problem/">
|
|
|
|
|
|
<link rel="prev" href="../dp_solution_pipeline/">
|
|
|
|
|
|
<link rel="next" href="../unbounded_knapsack_problem/">
|
|
|
|
|
|
<link rel="icon" href="../../assets/images/favicon.png">
|
|
<meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.5.5">
|
|
|
|
|
|
|
|
<title>14.4 0-1 Knapsack problem - Hello Algo</title>
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../../assets/stylesheets/main.50c56a3b.min.css">
|
|
|
|
|
|
<link rel="stylesheet" href="../../assets/stylesheets/palette.06af60db.min.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
|
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback">
|
|
<style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style>
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../../stylesheets/extra.css">
|
|
|
|
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
|
|
html.glightbox-open { overflow: initial; height: 100%; }
|
|
.gslide-title { margin-top: 0px; user-select: text; }
|
|
.gslide-desc { color: #666; user-select: text; }
|
|
.gslide-image img { background: white; }
|
|
|
|
.gscrollbar-fixer { padding-right: 15px; }
|
|
.gdesc-inner { font-size: 0.75rem; }
|
|
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
|
|
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
|
|
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}
|
|
</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal">
|
|
|
|
|
|
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
|
|
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
|
|
<label class="md-overlay" for="__drawer"></label>
|
|
<div data-md-component="skip">
|
|
|
|
|
|
<a href="#144-0-1-knapsack-problem" class="md-skip">
|
|
Skip to content
|
|
</a>
|
|
|
|
</div>
|
|
<div data-md-component="announce">
|
|
|
|
<aside class="md-banner">
|
|
<div class="md-banner__inner md-grid md-typeset">
|
|
|
|
<button class="md-banner__button md-icon" aria-label="Don't show this again">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
|
|
</button>
|
|
|
|
|
|
|
|
|
|
|
|
<div class="banner-svg">
|
|
<svg xmlns="http://www.w3.org/2000/svg"
|
|
viewBox="0 0 512 512"><!--!Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free Copyright 2024 Fonticons, Inc.-->
|
|
<path
|
|
d="M480 32c0-12.9-7.8-24.6-19.8-29.6s-25.7-2.2-34.9 6.9L381.7 53c-48 48-113.1 75-181 75H192 160 64c-35.3 0-64 28.7-64 64v96c0 35.3 28.7 64 64 64l0 128c0 17.7 14.3 32 32 32h64c17.7 0 32-14.3 32-32V352l8.7 0c67.9 0 133 27 181 75l43.6 43.6c9.2 9.2 22.9 11.9 34.9 6.9s19.8-16.6 19.8-29.6V300.4c18.6-8.8 32-32.5 32-60.4s-13.4-51.6-32-60.4V32zm-64 76.7V240 371.3C357.2 317.8 280.5 288 200.7 288H192V192h8.7c79.8 0 156.5-29.8 215.3-83.3z" />
|
|
</svg>
|
|
<span>Welcome to contribute to Chinese-to-English translation! Please visit <a href="https://github.com/krahets/hello-algo/issues/914">#914</a> for more details.</span>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
<script>var content,el=document.querySelector("[data-md-component=announce]");el&&(content=el.querySelector(".md-typeset"),__md_hash(content.innerHTML)===__md_get("__announce")&&(el.hidden=!0))</script>
|
|
|
|
</aside>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<header class="md-header md-header--shadow" data-md-component="header">
|
|
<nav class="md-header__inner md-grid" aria-label="Header">
|
|
<a href="../.." title="Hello Algo" class="md-header__button md-logo" aria-label="Hello Algo" data-md-component="logo">
|
|
|
|
<img src="../../assets/images/logo.svg" alt="logo">
|
|
|
|
</a>
|
|
<label class="md-header__button md-icon" for="__drawer">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
|
|
</label>
|
|
<div class="md-header__title" data-md-component="header-title">
|
|
<div class="md-header__ellipsis">
|
|
<div class="md-header__topic">
|
|
<span class="md-ellipsis">
|
|
Hello Algo
|
|
</span>
|
|
</div>
|
|
<div class="md-header__topic" data-md-component="header-topic">
|
|
<span class="md-ellipsis">
|
|
|
|
14.4 0-1 Knapsack problem
|
|
|
|
</span>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<form class="md-header__option" data-md-component="palette">
|
|
|
|
|
|
|
|
|
|
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="teal" aria-label="Dark mode" type="radio" name="__palette" id="__palette_0">
|
|
|
|
<label class="md-header__button md-icon" title="Dark mode" for="__palette_1" hidden>
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
|
|
</label>
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="black" data-md-color-accent="teal" aria-label="Light mode" type="radio" name="__palette" id="__palette_1">
|
|
|
|
<label class="md-header__button md-icon" title="Light mode" for="__palette_0" hidden>
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
|
|
</label>
|
|
|
|
|
|
</form>
|
|
|
|
|
|
|
|
<script>var media,input,key,value,palette=__md_get("__palette");if(palette&&palette.color){"(prefers-color-scheme)"===palette.color.media&&(media=matchMedia("(prefers-color-scheme: light)"),input=document.querySelector(media.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']"),palette.color.media=input.getAttribute("data-md-color-media"),palette.color.scheme=input.getAttribute("data-md-color-scheme"),palette.color.primary=input.getAttribute("data-md-color-primary"),palette.color.accent=input.getAttribute("data-md-color-accent"));for([key,value]of Object.entries(palette.color))document.body.setAttribute("data-md-color-"+key,value)}</script>
|
|
|
|
|
|
<div class="md-header__option">
|
|
<div class="md-select">
|
|
|
|
<button class="md-header__button md-icon" aria-label="Select language">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.52 17.52 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04M18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12m-2.62 7 1.62-4.33L19.12 17h-3.24Z"/></svg>
|
|
</button>
|
|
<div class="md-select__inner">
|
|
<ul class="md-select__list">
|
|
|
|
<li class="md-select__item">
|
|
<a href="/chapter_dynamic_programming/knapsack_problem/" hreflang="zh" class="md-select__link">
|
|
简体中文
|
|
</a>
|
|
</li>
|
|
|
|
<li class="md-select__item">
|
|
<a href="/zh-hant/chapter_dynamic_programming/knapsack_problem/" hreflang="zh-Hant" class="md-select__link">
|
|
繁體中文
|
|
</a>
|
|
</li>
|
|
|
|
<li class="md-select__item">
|
|
<a href="/en/chapter_dynamic_programming/knapsack_problem/" hreflang="en" class="md-select__link">
|
|
English
|
|
</a>
|
|
</li>
|
|
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<label class="md-header__button md-icon" for="__search">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
|
</label>
|
|
<div class="md-search" data-md-component="search" role="dialog">
|
|
<label class="md-search__overlay" for="__search"></label>
|
|
<div class="md-search__inner" role="search">
|
|
<form class="md-search__form" name="search">
|
|
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
|
|
<label class="md-search__icon md-icon" for="__search">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
|
</label>
|
|
<nav class="md-search__options" aria-label="Search">
|
|
|
|
<a href="javascript:void(0)" class="md-search__icon md-icon" title="Share" aria-label="Share" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
|
|
</a>
|
|
|
|
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
|
|
</button>
|
|
</nav>
|
|
|
|
<div class="md-search__suggest" data-md-component="search-suggest"></div>
|
|
|
|
</form>
|
|
<div class="md-search__output">
|
|
<div class="md-search__scrollwrap" data-md-scrollfix>
|
|
<div class="md-search-result" data-md-component="search-result">
|
|
<div class="md-search-result__meta">
|
|
Initializing search
|
|
</div>
|
|
<ol class="md-search-result__list" role="presentation"></ol>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
<div class="md-header__source">
|
|
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
|
|
<div class="md-source__icon md-icon">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
|
</div>
|
|
<div class="md-source__repository">
|
|
krahets/hello-algo
|
|
</div>
|
|
</a>
|
|
</div>
|
|
|
|
</nav>
|
|
|
|
</header>
|
|
|
|
<div class="md-container" data-md-component="container">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<main class="md-main" data-md-component="main">
|
|
<div class="md-main__inner md-grid">
|
|
|
|
|
|
|
|
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
|
|
<div class="md-sidebar__scrollwrap">
|
|
<div class="md-sidebar__inner">
|
|
|
|
|
|
|
|
|
|
<nav class="md-nav md-nav--primary" aria-label="Navigation" data-md-level="0">
|
|
<label class="md-nav__title" for="__drawer">
|
|
<a href="../.." title="Hello Algo" class="md-nav__button md-logo" aria-label="Hello Algo" data-md-component="logo">
|
|
|
|
<img src="../../assets/images/logo.svg" alt="logo">
|
|
|
|
</a>
|
|
Hello Algo
|
|
</label>
|
|
|
|
<div class="md-nav__source">
|
|
<a href="https://github.com/krahets/hello-algo" title="Go to repository" class="md-source" data-md-component="source">
|
|
<div class="md-source__icon md-icon">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
|
</div>
|
|
<div class="md-source__repository">
|
|
krahets/hello-algo
|
|
</div>
|
|
</a>
|
|
</div>
|
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_hello_algo/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m13.13 22.19-1.63-3.83c1.57-.58 3.04-1.36 4.4-2.27l-2.77 6.1M5.64 12.5l-3.83-1.63 6.1-2.77C7 9.46 6.22 10.93 5.64 12.5M19.22 4c.28 0 .53 0 .74.05.17 1.39-.02 4.25-3.3 7.53-1.7 1.71-3.73 3.02-6.01 3.89l-2.15-2.1c.92-2.31 2.23-4.34 3.92-6.03C15.18 4.58 17.64 4 19.22 4m0-2c-1.98 0-4.98.69-8.22 3.93-2.19 2.19-3.5 4.6-4.35 6.71-.28.75-.09 1.57.46 2.13l2.13 2.12c.38.38.89.61 1.42.61.23 0 .47-.06.7-.15A19.1 19.1 0 0 0 18.07 13c5.66-5.66 3.54-10.61 3.54-10.61S20.7 2 19.22 2m-4.68 7.46c-.78-.78-.78-2.05 0-2.83s2.05-.78 2.83 0c.77.78.78 2.05 0 2.83-.78.78-2.05.78-2.83 0m-5.66 7.07-1.41-1.41 1.41 1.41M6.24 22l3.64-3.64c-.34-.09-.67-.24-.97-.45L4.83 22h1.41M2 22h1.41l4.77-4.76-1.42-1.41L2 20.59V22m0-2.83 4.09-4.08c-.21-.3-.36-.62-.45-.97L2 17.76v1.41Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Before starting
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_1">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Before starting
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_preface/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 0. Preface
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_2" id="__nav_2_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_2">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 0. Preface
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
0.1 About this book
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
0.2 How to read
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_preface/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
0.3 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_introduction/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 1. Encounter with algorithms
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_3" id="__nav_3_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_3">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 1. Encounter with algorithms
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
1.1 Algorithms are everywhere
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
1.2 What is an algorithm
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_introduction/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
1.3 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_computational_complexity/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 2. Complexity analysis
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_4" id="__nav_4_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_4">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 2. Complexity analysis
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
2.1 Algorithm efficiency assessment
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_computational_complexity/iteration_and_recursion/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
2.2 Iteration and recursion
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
2.3 Time complexity
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
2.4 Space complexity
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
2.5 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_data_structure/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 3. Data structures
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_5" id="__nav_5_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_5">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 3. Data structures
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
3.1 Classification of data structures
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
3.2 Basic data types
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
3.3 Number encoding *
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
3.4 Character encoding *
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
3.5 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 4. Array and linked list
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_6" id="__nav_6_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_6">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 4. Array and linked list
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
4.1 Array
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
4.2 Linked list
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
4.3 List
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_array_and_linkedlist/ram_and_cache/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
4.4 Memory and cache *
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
4.5 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 5. Stack and queue
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_7" id="__nav_7_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_7">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 5. Stack and queue
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
5.1 Stack
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
5.2 Queue
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
5.3 Double-ended queue
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
5.4 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_hashing/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 6. Hash table
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_8" id="__nav_8_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_8">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 6. Hash table
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
6.1 Hash table
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
6.2 Hash collision
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
6.3 Hash algorithm
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_hashing/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
6.4 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_tree/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 7. Tree
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_9" id="__nav_9_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_9">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 7. Tree
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
7.1 Binary tree
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
7.2 Binary tree traversal
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
7.3 Array Representation of tree
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
7.4 Binary Search tree
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
7.5 AVL tree *
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_tree/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
7.6 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_heap/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 8. Heap
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_10" id="__nav_10_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_10">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 8. Heap
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_heap/heap/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
8.1 Heap
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
8.2 Building a heap
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_heap/top_k/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
8.3 Top-k problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_heap/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
8.4 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_graph/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 9. Graph
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_11" id="__nav_11_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_11">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 9. Graph
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_graph/graph/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
9.1 Graph
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
9.2 Basic graph operations
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
9.3 Graph traversal
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_graph/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
9.4 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_searching/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 10. Searching
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_12" id="__nav_12_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_12">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 10. Searching
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
10.1 Binary search
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
10.2 Binary search insertion
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
10.3 Binary search boundaries
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
10.4 Hashing optimization strategies
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
10.5 Search algorithms revisited
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_searching/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
10.6 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_sorting/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 11. Sorting
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_13" id="__nav_13_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_13">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 11. Sorting
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.1 Sorting algorithms
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.2 Selection sort
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.3 Bubble sort
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.4 Insertion sort
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.5 Quick sort
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.6 Merge sort
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.7 Heap sort
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.8 Bucket sort
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.9 Counting sort
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.10 Radix sort
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_sorting/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
11.11 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7h-5M2 9v6h5V9H2m10 0v2H9v2h3v2l3-3-3-3m5 2v2h5v-2h-5m0 4v2h5v-2h-5Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 12. Divide and conquer
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_14" id="__nav_14_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_14">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 12. Divide and conquer
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
12.1 Divide and conquer algorithms
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
12.2 Divide and conquer search strategy
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
12.3 Building binary tree problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
12.4 Tower of Hanoi Problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
12.5 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_backtracking/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 13. Backtracking
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_15" id="__nav_15_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_15">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 13. Backtracking
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
13.1 Backtracking algorithms
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
13.2 Permutation problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
13.3 Subset sum problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
13.4 n queens problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
13.5 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" checked>
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 14. Dynamic programming
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_16" id="__nav_16_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="true">
|
|
<label class="md-nav__title" for="__nav_16">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 14. Dynamic programming
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../intro_to_dynamic_programming/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
14.1 Introduction to dynamic programming
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../dp_problem_features/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
14.2 Characteristics of DP problems
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../dp_solution_pipeline/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
14.3 DP problem-solving approach¶
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--active">
|
|
|
|
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__link md-nav__link--active" for="__toc">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
14.4 0-1 Knapsack problem
|
|
</span>
|
|
|
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
<a href="./" class="md-nav__link md-nav__link--active">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
14.4 0-1 Knapsack problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__title" for="__toc">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Table of contents
|
|
</label>
|
|
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#1-method-one-brute-force-search" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
1. Method one: Brute force search
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#2-method-two-memoized-search" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
2. Method two: Memoized search
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#3-method-three-dynamic-programming" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
3. Method three: Dynamic programming
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#4-space-optimization" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
4. Space optimization
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../unbounded_knapsack_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
14.5 Unbounded knapsack problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../edit_distance_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
14.6 Edit distance problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
14.7 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_greedy/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16v.04Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 15. Greedy
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_17" id="__nav_17_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_17">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 15. Greedy
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
15.1 Greedy algorithms
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
15.2 Fractional knapsack problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
15.3 Maximum capacity problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
15.4 Maximum product cutting problem
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_greedy/summary/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
15.5 Summary
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_appendix/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
Chapter 16. Appendix
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
|
|
<label class="md-nav__link " for="__nav_18" id="__nav_18_label" tabindex="0">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
</label>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_18">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Chapter 16. Appendix
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_appendix/installation/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
16.1 Installation
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
16.2 Contributing
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
<a href="../../chapter_appendix/terminology/" class="md-nav__link">
|
|
|
|
|
|
<span class="md-ellipsis">
|
|
16.3 Terminology
|
|
</span>
|
|
|
|
|
|
</a>
|
|
</li>
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_19" >
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__container">
|
|
<a href="../../chapter_reference/" class="md-nav__link ">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9 3v15h3V3H9m3 2 4 13 3-1-4-13-3 1M5 5v13h3V5H5M3 19v2h18v-2H3Z"/></svg>
|
|
|
|
<span class="md-ellipsis">
|
|
References
|
|
</span>
|
|
|
|
|
|
</a>
|
|
|
|
</div>
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_19_label" aria-expanded="false">
|
|
<label class="md-nav__title" for="__nav_19">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
References
|
|
</label>
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
|
|
</li>
|
|
|
|
|
|
|
|
</ul>
|
|
</nav>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
|
|
<div class="md-sidebar__scrollwrap">
|
|
<div class="md-sidebar__inner">
|
|
|
|
|
|
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__title" for="__toc">
|
|
<span class="md-nav__icon md-icon"></span>
|
|
Table of contents
|
|
</label>
|
|
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#1-method-one-brute-force-search" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
1. Method one: Brute force search
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#2-method-two-memoized-search" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
2. Method two: Memoized search
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#3-method-three-dynamic-programming" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
3. Method three: Dynamic programming
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
<li class="md-nav__item">
|
|
<a href="#4-space-optimization" class="md-nav__link">
|
|
<span class="md-ellipsis">
|
|
4. Space optimization
|
|
</span>
|
|
</a>
|
|
|
|
</li>
|
|
|
|
</ul>
|
|
|
|
</nav>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<div class="md-content" data-md-component="content">
|
|
<article class="md-content__inner md-typeset">
|
|
|
|
<!-- Tags -->
|
|
|
|
|
|
<!-- Actions -->
|
|
<!-- Actions -->
|
|
|
|
|
|
<!-- Edit button -->
|
|
|
|
<a
|
|
href="https://github.com/krahets/hello-algo/tree/main/en/docs/chapter_dynamic_programming/knapsack_problem.md"
|
|
title="Edit this page"
|
|
class="md-content__button md-icon"
|
|
>
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M441 58.9 453.1 71c9.4 9.4 9.4 24.6 0 33.9L424 134.1 377.9 88 407 58.9c9.4-9.4 24.6-9.4 33.9 0zM209.8 256.2 344 121.9l46.1 46.1-134.3 134.2c-2.9 2.9-6.5 5-10.4 6.1L186.9 325l16.7-58.5c1.1-3.9 3.2-7.5 6.1-10.4zM373.1 25 175.8 222.2c-8.7 8.7-15 19.4-18.3 31.1l-28.6 100c-2.4 8.4-.1 17.4 6.1 23.6s15.2 8.5 23.6 6.1l100-28.6c11.8-3.4 22.5-9.7 31.1-18.3L487 138.9c28.1-28.1 28.1-73.7 0-101.8L474.9 25c-28.1-28.1-73.7-28.1-101.8 0zM88 64c-48.6 0-88 39.4-88 88v272c0 48.6 39.4 88 88 88h272c48.6 0 88-39.4 88-88V312c0-13.3-10.7-24-24-24s-24 10.7-24 24v112c0 22.1-17.9 40-40 40H88c-22.1 0-40-17.9-40-40V152c0-22.1 17.9-40 40-40h112c13.3 0 24-10.7 24-24s-10.7-24-24-24H88z"/></svg>
|
|
</a>
|
|
|
|
|
|
<!-- View button -->
|
|
|
|
|
|
|
|
<!-- Page content -->
|
|
<h1 id="144-0-1-knapsack-problem">14.4 0-1 Knapsack problem<a class="headerlink" href="#144-0-1-knapsack-problem" title="Permanent link">¶</a></h1>
|
|
<p>The knapsack problem is an excellent introductory problem for dynamic programming and is the most common type of problem in dynamic programming. It has many variants, such as the 0-1 knapsack problem, the unbounded knapsack problem, and the multiple knapsack problem, etc.</p>
|
|
<p>In this section, we will first solve the most common 0-1 knapsack problem.</p>
|
|
<div class="admonition question">
|
|
<p class="admonition-title">Question</p>
|
|
<p>Given <span class="arithmatex">\(n\)</span> items, the weight of the <span class="arithmatex">\(i\)</span>-th item is <span class="arithmatex">\(wgt[i-1]\)</span> and its value is <span class="arithmatex">\(val[i-1]\)</span>, and a knapsack with a capacity of <span class="arithmatex">\(cap\)</span>. Each item can be chosen only once. What is the maximum value of items that can be placed in the knapsack under the capacity limit?</p>
|
|
</div>
|
|
<p>Observe Figure 14-17, since the item number <span class="arithmatex">\(i\)</span> starts counting from 1, and the array index starts from 0, thus the weight of item <span class="arithmatex">\(i\)</span> corresponds to <span class="arithmatex">\(wgt[i-1]\)</span> and the value corresponds to <span class="arithmatex">\(val[i-1]\)</span>.</p>
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_example.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Example data of the 0-1 knapsack" class="animation-figure" src="../knapsack_problem.assets/knapsack_example.png" /></a></p>
|
|
<p align="center"> Figure 14-17 Example data of the 0-1 knapsack </p>
|
|
|
|
<p>We can consider the 0-1 knapsack problem as a process consisting of <span class="arithmatex">\(n\)</span> rounds of decisions, where for each item there are two decisions: not to put it in or to put it in, thus the problem fits the decision tree model.</p>
|
|
<p>The objective of this problem is to "maximize the value of the items that can be put in the knapsack under the limited capacity," thus it is more likely a dynamic programming problem.</p>
|
|
<p><strong>First step: Think about each round of decisions, define states, thereby obtaining the <span class="arithmatex">\(dp\)</span> table</strong></p>
|
|
<p>For each item, if not put into the knapsack, the capacity remains unchanged; if put in, the capacity is reduced. From this, the state definition can be obtained: the current item number <span class="arithmatex">\(i\)</span> and knapsack capacity <span class="arithmatex">\(c\)</span>, denoted as <span class="arithmatex">\([i, c]\)</span>.</p>
|
|
<p>State <span class="arithmatex">\([i, c]\)</span> corresponds to the sub-problem: <strong>the maximum value of the first <span class="arithmatex">\(i\)</span> items in a knapsack of capacity <span class="arithmatex">\(c\)</span></strong>, denoted as <span class="arithmatex">\(dp[i, c]\)</span>.</p>
|
|
<p>The solution we are looking for is <span class="arithmatex">\(dp[n, cap]\)</span>, so we need a two-dimensional <span class="arithmatex">\(dp\)</span> table of size <span class="arithmatex">\((n+1) \times (cap+1)\)</span>.</p>
|
|
<p><strong>Second step: Identify the optimal substructure, then derive the state transition equation</strong></p>
|
|
<p>After making the decision for item <span class="arithmatex">\(i\)</span>, what remains is the sub-problem of decisions for the first <span class="arithmatex">\(i-1\)</span> items, which can be divided into two cases.</p>
|
|
<ul>
|
|
<li><strong>Not putting item <span class="arithmatex">\(i\)</span></strong>: The knapsack capacity remains unchanged, state changes to <span class="arithmatex">\([i-1, c]\)</span>.</li>
|
|
<li><strong>Putting item <span class="arithmatex">\(i\)</span></strong>: The knapsack capacity decreases by <span class="arithmatex">\(wgt[i-1]\)</span>, and the value increases by <span class="arithmatex">\(val[i-1]\)</span>, state changes to <span class="arithmatex">\([i-1, c-wgt[i-1]]\)</span>.</li>
|
|
</ul>
|
|
<p>The above analysis reveals the optimal substructure of this problem: <strong>the maximum value <span class="arithmatex">\(dp[i, c]\)</span> is equal to the larger value of the two schemes of not putting item <span class="arithmatex">\(i\)</span> and putting item <span class="arithmatex">\(i\)</span></strong>. From this, the state transition equation can be derived:</p>
|
|
<div class="arithmatex">\[
|
|
dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
|
|
\]</div>
|
|
<p>It is important to note that if the current item's weight <span class="arithmatex">\(wgt[i - 1]\)</span> exceeds the remaining knapsack capacity <span class="arithmatex">\(c\)</span>, then the only option is not to put it in the knapsack.</p>
|
|
<p><strong>Third step: Determine the boundary conditions and the order of state transitions</strong></p>
|
|
<p>When there are no items or the knapsack capacity is <span class="arithmatex">\(0\)</span>, the maximum value is <span class="arithmatex">\(0\)</span>, i.e., the first column <span class="arithmatex">\(dp[i, 0]\)</span> and the first row <span class="arithmatex">\(dp[0, c]\)</span> are both equal to <span class="arithmatex">\(0\)</span>.</p>
|
|
<p>The current state <span class="arithmatex">\([i, c]\)</span> transitions from the state directly above <span class="arithmatex">\([i-1, c]\)</span> and the state to the upper left <span class="arithmatex">\([i-1, c-wgt[i-1]]\)</span>, thus, the entire <span class="arithmatex">\(dp\)</span> table is traversed in order through two layers of loops.</p>
|
|
<p>Following the above analysis, we will next implement the solutions in the order of brute force search, memoized search, and dynamic programming.</p>
|
|
<h3 id="1-method-one-brute-force-search">1. Method one: Brute force search<a class="headerlink" href="#1-method-one-brute-force-search" title="Permanent link">¶</a></h3>
|
|
<p>The search code includes the following elements.</p>
|
|
<ul>
|
|
<li><strong>Recursive parameters</strong>: State <span class="arithmatex">\([i, c]\)</span>.</li>
|
|
<li><strong>Return value</strong>: Solution to the sub-problem <span class="arithmatex">\(dp[i, c]\)</span>.</li>
|
|
<li><strong>Termination condition</strong>: When the item number is out of bounds <span class="arithmatex">\(i = 0\)</span> or the remaining capacity of the knapsack is <span class="arithmatex">\(0\)</span>, terminate the recursion and return the value <span class="arithmatex">\(0\)</span>.</li>
|
|
<li><strong>Pruning</strong>: If the current item's weight exceeds the remaining capacity of the knapsack, the only option is not to put it in the knapsack.</li>
|
|
</ul>
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="1:14"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><input id="__tabbed_1_13" name="__tabbed_1" type="radio" /><input id="__tabbed_1_14" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Python</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Java</label><label for="__tabbed_1_4">C#</label><label for="__tabbed_1_5">Go</label><label for="__tabbed_1_6">Swift</label><label for="__tabbed_1_7">JS</label><label for="__tabbed_1_8">TS</label><label for="__tabbed_1_9">Dart</label><label for="__tabbed_1_10">Rust</label><label for="__tabbed_1_11">C</label><label for="__tabbed_1_12">Kotlin</label><label for="__tabbed_1_13">Ruby</label><label for="__tabbed_1_14">Zig</label></div>
|
|
<div class="tabbed-content">
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.py</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="k">def</span> <span class="nf">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">val</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">c</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
|
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="w"> </span><span class="sd">"""0-1 Knapsack: Brute force search"""</span>
|
|
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a> <span class="c1"># If all items have been chosen or the knapsack has no remaining capacity, return value 0</span>
|
|
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">c</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
|
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a> <span class="k">return</span> <span class="mi">0</span>
|
|
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a> <span class="c1"># If exceeding the knapsack capacity, can only choose not to put it in the knapsack</span>
|
|
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a> <span class="k">if</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">></span> <span class="n">c</span><span class="p">:</span>
|
|
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a> <span class="k">return</span> <span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
|
|
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a> <span class="c1"># Calculate the maximum value of not putting in and putting in item i</span>
|
|
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a> <span class="n">no</span> <span class="o">=</span> <span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
|
|
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a> <span class="n">yes</span> <span class="o">=</span> <span class="n">knapsack_dfs</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span> <span class="o">-</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">])</span> <span class="o">+</span> <span class="n">val</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span>
|
|
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a> <span class="c1"># Return the greater value of the two options</span>
|
|
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a> <span class="k">return</span> <span class="nb">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span> <span class="n">yes</span><span class="p">)</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 0-1 Knapsack: Brute force search */</span>
|
|
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFS</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="c1">// If all items have been chosen or the knapsack has no remaining capacity, return value 0</span>
|
|
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
|
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="c1">// If exceeding the knapsack capacity, can only choose not to put it in the knapsack</span>
|
|
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
|
|
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
|
|
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
|
|
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
|
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="c1">// Return the greater value of the two options</span>
|
|
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
|
|
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.java</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="cm">/* 0-1 Knapsack: Brute force search */</span>
|
|
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFS</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a><span class="w"> </span><span class="c1">// If all items have been chosen or the knapsack has no remaining capacity, return value 0</span>
|
|
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
|
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="w"> </span><span class="c1">// If exceeding the knapsack capacity, can only choose not to put it in the knapsack</span>
|
|
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
|
|
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
|
|
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
|
|
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFS</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
|
<a id="__codelineno-2-14" name="__codelineno-2-14" href="#__codelineno-2-14"></a><span class="w"> </span><span class="c1">// Return the greater value of the two options</span>
|
|
<a id="__codelineno-2-15" name="__codelineno-2-15" href="#__codelineno-2-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
|
|
<a id="__codelineno-2-16" name="__codelineno-2-16" href="#__codelineno-2-16"></a><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.cs</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">knapsack</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">KnapsackDFS</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.go</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">knapsackDFS</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.swift</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">knapsackDFS</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDFS</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDFS</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.dart</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDFS</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.rs</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsack_dfs</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.c</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDFS</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.kt</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">knapsackDFS</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.rb</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">knapsack_dfs</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.zig</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDFS</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<p>As shown in Figure 14-18, since each item generates two search branches of not selecting and selecting, the time complexity is <span class="arithmatex">\(O(2^n)\)</span>.</p>
|
|
<p>Observing the recursive tree, it is easy to see that there are overlapping sub-problems, such as <span class="arithmatex">\(dp[1, 10]\)</span>, etc. When there are many items and the knapsack capacity is large, especially when there are many items of the same weight, the number of overlapping sub-problems will increase significantly.</p>
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dfs.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="The brute force search recursive tree of the 0-1 knapsack problem" class="animation-figure" src="../knapsack_problem.assets/knapsack_dfs.png" /></a></p>
|
|
<p align="center"> Figure 14-18 The brute force search recursive tree of the 0-1 knapsack problem </p>
|
|
|
|
<h3 id="2-method-two-memoized-search">2. Method two: Memoized search<a class="headerlink" href="#2-method-two-memoized-search" title="Permanent link">¶</a></h3>
|
|
<p>To ensure that overlapping sub-problems are only calculated once, we use a memoization list <code>mem</code> to record the solutions to sub-problems, where <code>mem[i][c]</code> corresponds to <span class="arithmatex">\(dp[i, c]\)</span>.</p>
|
|
<p>After introducing memoization, <strong>the time complexity depends on the number of sub-problems</strong>, which is <span class="arithmatex">\(O(n \times cap)\)</span>. The implementation code is as follows:</p>
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="2:14"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><input id="__tabbed_2_13" name="__tabbed_2" type="radio" /><input id="__tabbed_2_14" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Python</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Java</label><label for="__tabbed_2_4">C#</label><label for="__tabbed_2_5">Go</label><label for="__tabbed_2_6">Swift</label><label for="__tabbed_2_7">JS</label><label for="__tabbed_2_8">TS</label><label for="__tabbed_2_9">Dart</label><label for="__tabbed_2_10">Rust</label><label for="__tabbed_2_11">C</label><label for="__tabbed_2_12">Kotlin</label><label for="__tabbed_2_13">Ruby</label><label for="__tabbed_2_14">Zig</label></div>
|
|
<div class="tabbed-content">
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.py</span><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="k">def</span> <span class="nf">knapsack_dfs_mem</span><span class="p">(</span>
|
|
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a> <span class="n">wgt</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">val</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">mem</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span> <span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">c</span><span class="p">:</span> <span class="nb">int</span>
|
|
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
|
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a><span class="w"> </span><span class="sd">"""0-1 Knapsack: Memoized search"""</span>
|
|
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a> <span class="c1"># If all items have been chosen or the knapsack has no remaining capacity, return value 0</span>
|
|
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">c</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
|
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a> <span class="k">return</span> <span class="mi">0</span>
|
|
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a> <span class="c1"># If there is a record, return it</span>
|
|
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a> <span class="k">if</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
|
|
<a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a> <span class="k">return</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
|
|
<a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a> <span class="c1"># If exceeding the knapsack capacity, can only choose not to put it in the knapsack</span>
|
|
<a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a> <span class="k">if</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">></span> <span class="n">c</span><span class="p">:</span>
|
|
<a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a> <span class="k">return</span> <span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
|
|
<a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a> <span class="c1"># Calculate the maximum value of not putting in and putting in item i</span>
|
|
<a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a> <span class="n">no</span> <span class="o">=</span> <span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
|
|
<a id="__codelineno-14-16" name="__codelineno-14-16" href="#__codelineno-14-16"></a> <span class="n">yes</span> <span class="o">=</span> <span class="n">knapsack_dfs_mem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span> <span class="n">val</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span> <span class="o">-</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">])</span> <span class="o">+</span> <span class="n">val</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span>
|
|
<a id="__codelineno-14-17" name="__codelineno-14-17" href="#__codelineno-14-17"></a> <span class="c1"># Record and return the greater value of the two options</span>
|
|
<a id="__codelineno-14-18" name="__codelineno-14-18" href="#__codelineno-14-18"></a> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span> <span class="n">yes</span><span class="p">)</span>
|
|
<a id="__codelineno-14-19" name="__codelineno-14-19" href="#__codelineno-14-19"></a> <span class="k">return</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.cpp</span><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="cm">/* 0-1 Knapsack: Memoized search */</span>
|
|
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFSMem</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="o">&</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="w"> </span><span class="c1">// If all items have been chosen or the knapsack has no remaining capacity, return value 0</span>
|
|
<a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
|
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="w"> </span><span class="c1">// If there is a record, return it</span>
|
|
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="mi">-1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
|
|
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="w"> </span><span class="c1">// If exceeding the knapsack capacity, can only choose not to put it in the knapsack</span>
|
|
<a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
|
|
<a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
|
|
<a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
|
|
<a id="__codelineno-15-17" name="__codelineno-15-17" href="#__codelineno-15-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
|
<a id="__codelineno-15-18" name="__codelineno-15-18" href="#__codelineno-15-18"></a><span class="w"> </span><span class="c1">// Record and return the greater value of the two options</span>
|
|
<a id="__codelineno-15-19" name="__codelineno-15-19" href="#__codelineno-15-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
|
|
<a id="__codelineno-15-20" name="__codelineno-15-20" href="#__codelineno-15-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
|
|
<a id="__codelineno-15-21" name="__codelineno-15-21" href="#__codelineno-15-21"></a><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.java</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 0-1 Knapsack: Memoized search */</span>
|
|
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="c1">// If all items have been chosen or the knapsack has no remaining capacity, return value 0</span>
|
|
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
|
|
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="c1">// If there is a record, return it</span>
|
|
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">;</span>
|
|
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="c1">// If exceeding the knapsack capacity, can only choose not to put it in the knapsack</span>
|
|
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
|
|
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="c1">// Calculate the maximum value of not putting in and putting in item i</span>
|
|
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="p">);</span>
|
|
<a id="__codelineno-16-17" name="__codelineno-16-17" href="#__codelineno-16-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">knapsackDFSMem</span><span class="p">(</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
|
<a id="__codelineno-16-18" name="__codelineno-16-18" href="#__codelineno-16-18"></a><span class="w"> </span><span class="c1">// Record and return the greater value of the two options</span>
|
|
<a id="__codelineno-16-19" name="__codelineno-16-19" href="#__codelineno-16-19"></a><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">max</span><span class="p">(</span><span class="n">no</span><span class="p">,</span><span class="w"> </span><span class="n">yes</span><span class="p">);</span>
|
|
<a id="__codelineno-16-20" name="__codelineno-16-20" href="#__codelineno-16-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">;</span>
|
|
<a id="__codelineno-16-21" name="__codelineno-16-21" href="#__codelineno-16-21"></a><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.cs</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">knapsack</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">KnapsackDFSMem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.go</span><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">knapsackDFSMem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.swift</span><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">knapsackDFSMem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDFSMem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDFSMem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.dart</span><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDFSMem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.rs</span><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsack_dfs_mem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.c</span><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDFSMem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.kt</span><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">knapsackDFSMem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.rb</span><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">knapsack_dfs_mem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.zig</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDFSMem</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<p>Figure 14-19 shows the search branches that are pruned in memoized search.</p>
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dfs_mem.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="The memoized search recursive tree of the 0-1 knapsack problem" class="animation-figure" src="../knapsack_problem.assets/knapsack_dfs_mem.png" /></a></p>
|
|
<p align="center"> Figure 14-19 The memoized search recursive tree of the 0-1 knapsack problem </p>
|
|
|
|
<h3 id="3-method-three-dynamic-programming">3. Method three: Dynamic programming<a class="headerlink" href="#3-method-three-dynamic-programming" title="Permanent link">¶</a></h3>
|
|
<p>Dynamic programming essentially involves filling the <span class="arithmatex">\(dp\)</span> table during the state transition, the code is shown in Figure 14-20:</p>
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="3:14"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><input id="__tabbed_3_13" name="__tabbed_3" type="radio" /><input id="__tabbed_3_14" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Python</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Java</label><label for="__tabbed_3_4">C#</label><label for="__tabbed_3_5">Go</label><label for="__tabbed_3_6">Swift</label><label for="__tabbed_3_7">JS</label><label for="__tabbed_3_8">TS</label><label for="__tabbed_3_9">Dart</label><label for="__tabbed_3_10">Rust</label><label for="__tabbed_3_11">C</label><label for="__tabbed_3_12">Kotlin</label><label for="__tabbed_3_13">Ruby</label><label for="__tabbed_3_14">Zig</label></div>
|
|
<div class="tabbed-content">
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.py</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="k">def</span> <span class="nf">knapsack_dp</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">val</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">cap</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
|
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="w"> </span><span class="sd">"""0-1 Knapsack: Dynamic programming"""</span>
|
|
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">wgt</span><span class="p">)</span>
|
|
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a> <span class="c1"># Initialize dp table</span>
|
|
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">cap</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)]</span>
|
|
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a> <span class="c1"># State transition</span>
|
|
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
|
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">cap</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
|
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a> <span class="k">if</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">></span> <span class="n">c</span><span class="p">:</span>
|
|
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a> <span class="c1"># If exceeding the knapsack capacity, do not choose item i</span>
|
|
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">]</span>
|
|
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a> <span class="k">else</span><span class="p">:</span>
|
|
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a> <span class="c1"># The greater value between not choosing and choosing item i</span>
|
|
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">c</span> <span class="o">-</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]]</span> <span class="o">+</span> <span class="n">val</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">])</span>
|
|
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">cap</span><span class="p">]</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.cpp</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 0-1 Knapsack: Dynamic programming */</span>
|
|
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDP</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="n">size</span><span class="p">();</span>
|
|
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
|
|
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">));</span>
|
|
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="c1">// State transition</span>
|
|
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="c1">// If exceeding the knapsack capacity, do not choose item i</span>
|
|
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">];</span>
|
|
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="c1">// The greater value between not choosing and choosing item i</span>
|
|
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]);</span>
|
|
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="p">][</span><span class="n">cap</span><span class="p">];</span>
|
|
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.java</span><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="cm">/* 0-1 Knapsack: Dynamic programming */</span>
|
|
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDP</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-30-3" name="__codelineno-30-3" href="#__codelineno-30-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="na">length</span><span class="p">;</span>
|
|
<a id="__codelineno-30-4" name="__codelineno-30-4" href="#__codelineno-30-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
|
|
<a id="__codelineno-30-5" name="__codelineno-30-5" href="#__codelineno-30-5"></a><span class="w"> </span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
|
<a id="__codelineno-30-6" name="__codelineno-30-6" href="#__codelineno-30-6"></a><span class="w"> </span><span class="c1">// State transition</span>
|
|
<a id="__codelineno-30-7" name="__codelineno-30-7" href="#__codelineno-30-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-30-8" name="__codelineno-30-8" href="#__codelineno-30-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-30-9" name="__codelineno-30-9" href="#__codelineno-30-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-30-10" name="__codelineno-30-10" href="#__codelineno-30-10"></a><span class="w"> </span><span class="c1">// If exceeding the knapsack capacity, do not choose item i</span>
|
|
<a id="__codelineno-30-11" name="__codelineno-30-11" href="#__codelineno-30-11"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">;</span>
|
|
<a id="__codelineno-30-12" name="__codelineno-30-12" href="#__codelineno-30-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-30-13" name="__codelineno-30-13" href="#__codelineno-30-13"></a><span class="w"> </span><span class="c1">// The greater value between not choosing and choosing item i</span>
|
|
<a id="__codelineno-30-14" name="__codelineno-30-14" href="#__codelineno-30-14"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">max</span><span class="p">(</span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">c</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">);</span>
|
|
<a id="__codelineno-30-15" name="__codelineno-30-15" href="#__codelineno-30-15"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-30-16" name="__codelineno-30-16" href="#__codelineno-30-16"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-30-17" name="__codelineno-30-17" href="#__codelineno-30-17"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-30-18" name="__codelineno-30-18" href="#__codelineno-30-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">n</span><span class="o">][</span><span class="n">cap</span><span class="o">]</span><span class="p">;</span>
|
|
<a id="__codelineno-30-19" name="__codelineno-30-19" href="#__codelineno-30-19"></a><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.cs</span><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">knapsack</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">KnapsackDP</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.go</span><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">knapsackDP</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.swift</span><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">knapsackDP</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDP</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDP</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.dart</span><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDP</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.rs</span><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsack_dp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.c</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDP</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.kt</span><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">knapsackDP</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.rb</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">knapsack_dp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.zig</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDP</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<p>As shown in Figure 14-20, both the time complexity and space complexity are determined by the size of the array <code>dp</code>, i.e., <span class="arithmatex">\(O(n \times cap)\)</span>.</p>
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="4:14"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><input id="__tabbed_4_11" name="__tabbed_4" type="radio" /><input id="__tabbed_4_12" name="__tabbed_4" type="radio" /><input id="__tabbed_4_13" name="__tabbed_4" type="radio" /><input id="__tabbed_4_14" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1"><1></label><label for="__tabbed_4_2"><2></label><label for="__tabbed_4_3"><3></label><label for="__tabbed_4_4"><4></label><label for="__tabbed_4_5"><5></label><label for="__tabbed_4_6"><6></label><label for="__tabbed_4_7"><7></label><label for="__tabbed_4_8"><8></label><label for="__tabbed_4_9"><9></label><label for="__tabbed_4_10"><10></label><label for="__tabbed_4_11"><11></label><label for="__tabbed_4_12"><12></label><label for="__tabbed_4_13"><13></label><label for="__tabbed_4_14"><14></label></div>
|
|
<div class="tabbed-content">
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="The dynamic programming process of the 0-1 knapsack problem" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step1.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step2" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step2.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step3" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step3.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step4" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step4.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step5.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step5" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step5.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step6.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step6" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step6.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step7.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step7" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step7.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step8.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step8" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step8.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step9.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step9" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step9.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step10.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step10" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step10.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step11.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step11" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step11.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step12.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step12" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step12.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step13.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step13" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step13.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_step14.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_step14" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_step14.png" /></a></p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<p align="center"> Figure 14-20 The dynamic programming process of the 0-1 knapsack problem </p>
|
|
|
|
<h3 id="4-space-optimization">4. Space optimization<a class="headerlink" href="#4-space-optimization" title="Permanent link">¶</a></h3>
|
|
<p>Since each state is only related to the state in the row above it, we can use two arrays to roll forward, reducing the space complexity from <span class="arithmatex">\(O(n^2)\)</span> to <span class="arithmatex">\(O(n)\)</span>.</p>
|
|
<p>Further thinking, can we use just one array to achieve space optimization? It can be observed that each state is transferred from the cell directly above or from the upper left cell. If there is only one array, when starting to traverse the <span class="arithmatex">\(i\)</span>-th row, that array still stores the state of row <span class="arithmatex">\(i-1\)</span>.</p>
|
|
<ul>
|
|
<li>If using normal order traversal, then when traversing to <span class="arithmatex">\(dp[i, j]\)</span>, the values from the upper left <span class="arithmatex">\(dp[i-1, 1]\)</span> ~ <span class="arithmatex">\(dp[i-1, j-1]\)</span> may have already been overwritten, thus the correct state transition result cannot be obtained.</li>
|
|
<li>If using reverse order traversal, there will be no overwriting problem, and the state transition can be conducted correctly.</li>
|
|
</ul>
|
|
<p>The figures below show the transition process from row <span class="arithmatex">\(i = 1\)</span> to row <span class="arithmatex">\(i = 2\)</span> in a single array. Please think about the differences between normal order traversal and reverse order traversal.</p>
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="5:6"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1"><1></label><label for="__tabbed_5_2"><2></label><label for="__tabbed_5_3"><3></label><label for="__tabbed_5_4"><4></label><label for="__tabbed_5_5"><5></label><label for="__tabbed_5_6"><6></label></div>
|
|
<div class="tabbed-content">
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step1.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="The space-optimized dynamic programming process of the 0-1 knapsack" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step1.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step2.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step2" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step2.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step3.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step3" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step3.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step4.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step4" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step4.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step5.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step5" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step5.png" /></a></p>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<p><a class="glightbox" href="../knapsack_problem.assets/knapsack_dp_comp_step6.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="knapsack_dp_comp_step6" class="animation-figure" src="../knapsack_problem.assets/knapsack_dp_comp_step6.png" /></a></p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<p align="center"> Figure 14-21 The space-optimized dynamic programming process of the 0-1 knapsack </p>
|
|
|
|
<p>In the code implementation, we only need to delete the first dimension <span class="arithmatex">\(i\)</span> of the array <code>dp</code> and change the inner loop to reverse traversal:</p>
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="6:14"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><input id="__tabbed_6_9" name="__tabbed_6" type="radio" /><input id="__tabbed_6_10" name="__tabbed_6" type="radio" /><input id="__tabbed_6_11" name="__tabbed_6" type="radio" /><input id="__tabbed_6_12" name="__tabbed_6" type="radio" /><input id="__tabbed_6_13" name="__tabbed_6" type="radio" /><input id="__tabbed_6_14" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Python</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Java</label><label for="__tabbed_6_4">C#</label><label for="__tabbed_6_5">Go</label><label for="__tabbed_6_6">Swift</label><label for="__tabbed_6_7">JS</label><label for="__tabbed_6_8">TS</label><label for="__tabbed_6_9">Dart</label><label for="__tabbed_6_10">Rust</label><label for="__tabbed_6_11">C</label><label for="__tabbed_6_12">Kotlin</label><label for="__tabbed_6_13">Ruby</label><label for="__tabbed_6_14">Zig</label></div>
|
|
<div class="tabbed-content">
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.py</span><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="k">def</span> <span class="nf">knapsack_dp_comp</span><span class="p">(</span><span class="n">wgt</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">val</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> <span class="n">cap</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
|
<a id="__codelineno-42-2" name="__codelineno-42-2" href="#__codelineno-42-2"></a><span class="w"> </span><span class="sd">"""0-1 Knapsack: Space-optimized dynamic programming"""</span>
|
|
<a id="__codelineno-42-3" name="__codelineno-42-3" href="#__codelineno-42-3"></a> <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">wgt</span><span class="p">)</span>
|
|
<a id="__codelineno-42-4" name="__codelineno-42-4" href="#__codelineno-42-4"></a> <span class="c1"># Initialize dp table</span>
|
|
<a id="__codelineno-42-5" name="__codelineno-42-5" href="#__codelineno-42-5"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">cap</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
|
|
<a id="__codelineno-42-6" name="__codelineno-42-6" href="#__codelineno-42-6"></a> <span class="c1"># State transition</span>
|
|
<a id="__codelineno-42-7" name="__codelineno-42-7" href="#__codelineno-42-7"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
|
|
<a id="__codelineno-42-8" name="__codelineno-42-8" href="#__codelineno-42-8"></a> <span class="c1"># Traverse in reverse order</span>
|
|
<a id="__codelineno-42-9" name="__codelineno-42-9" href="#__codelineno-42-9"></a> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">cap</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">):</span>
|
|
<a id="__codelineno-42-10" name="__codelineno-42-10" href="#__codelineno-42-10"></a> <span class="k">if</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">></span> <span class="n">c</span><span class="p">:</span>
|
|
<a id="__codelineno-42-11" name="__codelineno-42-11" href="#__codelineno-42-11"></a> <span class="c1"># If exceeding the knapsack capacity, do not choose item i</span>
|
|
<a id="__codelineno-42-12" name="__codelineno-42-12" href="#__codelineno-42-12"></a> <span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span>
|
|
<a id="__codelineno-42-13" name="__codelineno-42-13" href="#__codelineno-42-13"></a> <span class="k">else</span><span class="p">:</span>
|
|
<a id="__codelineno-42-14" name="__codelineno-42-14" href="#__codelineno-42-14"></a> <span class="c1"># The greater value between not choosing and choosing item i</span>
|
|
<a id="__codelineno-42-15" name="__codelineno-42-15" href="#__codelineno-42-15"></a> <span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">c</span> <span class="o">-</span> <span class="n">wgt</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]]</span> <span class="o">+</span> <span class="n">val</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">])</span>
|
|
<a id="__codelineno-42-16" name="__codelineno-42-16" href="#__codelineno-42-16"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">cap</span><span class="p">]</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.cpp</span><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a><span class="cm">/* 0-1 Knapsack: Space-optimized dynamic programming */</span>
|
|
<a id="__codelineno-43-2" name="__codelineno-43-2" href="#__codelineno-43-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDPComp</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="o">&</span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-43-3" name="__codelineno-43-3" href="#__codelineno-43-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="n">size</span><span class="p">();</span>
|
|
<a id="__codelineno-43-4" name="__codelineno-43-4" href="#__codelineno-43-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
|
|
<a id="__codelineno-43-5" name="__codelineno-43-5" href="#__codelineno-43-5"></a><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
|
|
<a id="__codelineno-43-6" name="__codelineno-43-6" href="#__codelineno-43-6"></a><span class="w"> </span><span class="c1">// State transition</span>
|
|
<a id="__codelineno-43-7" name="__codelineno-43-7" href="#__codelineno-43-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-43-8" name="__codelineno-43-8" href="#__codelineno-43-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
|
|
<a id="__codelineno-43-9" name="__codelineno-43-9" href="#__codelineno-43-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">>=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-43-10" name="__codelineno-43-10" href="#__codelineno-43-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-43-11" name="__codelineno-43-11" href="#__codelineno-43-11"></a><span class="w"> </span><span class="c1">// The greater value between not choosing and choosing item i</span>
|
|
<a id="__codelineno-43-12" name="__codelineno-43-12" href="#__codelineno-43-12"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">max</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]);</span>
|
|
<a id="__codelineno-43-13" name="__codelineno-43-13" href="#__codelineno-43-13"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-43-14" name="__codelineno-43-14" href="#__codelineno-43-14"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-43-15" name="__codelineno-43-15" href="#__codelineno-43-15"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-43-16" name="__codelineno-43-16" href="#__codelineno-43-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">cap</span><span class="p">];</span>
|
|
<a id="__codelineno-43-17" name="__codelineno-43-17" href="#__codelineno-43-17"></a><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.java</span><pre><span></span><code><a id="__codelineno-44-1" name="__codelineno-44-1" href="#__codelineno-44-1"></a><span class="cm">/* 0-1 Knapsack: Space-optimized dynamic programming */</span>
|
|
<a id="__codelineno-44-2" name="__codelineno-44-2" href="#__codelineno-44-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">knapsackDPComp</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">wgt</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">val</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-44-3" name="__codelineno-44-3" href="#__codelineno-44-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">wgt</span><span class="p">.</span><span class="na">length</span><span class="p">;</span>
|
|
<a id="__codelineno-44-4" name="__codelineno-44-4" href="#__codelineno-44-4"></a><span class="w"> </span><span class="c1">// Initialize dp table</span>
|
|
<a id="__codelineno-44-5" name="__codelineno-44-5" href="#__codelineno-44-5"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
|
<a id="__codelineno-44-6" name="__codelineno-44-6" href="#__codelineno-44-6"></a><span class="w"> </span><span class="c1">// State transition</span>
|
|
<a id="__codelineno-44-7" name="__codelineno-44-7" href="#__codelineno-44-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-44-8" name="__codelineno-44-8" href="#__codelineno-44-8"></a><span class="w"> </span><span class="c1">// Traverse in reverse order</span>
|
|
<a id="__codelineno-44-9" name="__codelineno-44-9" href="#__codelineno-44-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">cap</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="w"> </span><span class="o">>=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-44-10" name="__codelineno-44-10" href="#__codelineno-44-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="n">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
<a id="__codelineno-44-11" name="__codelineno-44-11" href="#__codelineno-44-11"></a><span class="w"> </span><span class="c1">// The greater value between not choosing and choosing item i</span>
|
|
<a id="__codelineno-44-12" name="__codelineno-44-12" href="#__codelineno-44-12"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">max</span><span class="p">(</span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">wgt</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">val</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">);</span>
|
|
<a id="__codelineno-44-13" name="__codelineno-44-13" href="#__codelineno-44-13"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-44-14" name="__codelineno-44-14" href="#__codelineno-44-14"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-44-15" name="__codelineno-44-15" href="#__codelineno-44-15"></a><span class="w"> </span><span class="p">}</span>
|
|
<a id="__codelineno-44-16" name="__codelineno-44-16" href="#__codelineno-44-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">cap</span><span class="o">]</span><span class="p">;</span>
|
|
<a id="__codelineno-44-17" name="__codelineno-44-17" href="#__codelineno-44-17"></a><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.cs</span><pre><span></span><code><a id="__codelineno-45-1" name="__codelineno-45-1" href="#__codelineno-45-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">knapsack</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">KnapsackDPComp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.go</span><pre><span></span><code><a id="__codelineno-46-1" name="__codelineno-46-1" href="#__codelineno-46-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">knapsackDPComp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.swift</span><pre><span></span><code><a id="__codelineno-47-1" name="__codelineno-47-1" href="#__codelineno-47-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">knapsackDPComp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-48-1" name="__codelineno-48-1" href="#__codelineno-48-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDPComp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-49-1" name="__codelineno-49-1" href="#__codelineno-49-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDPComp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.dart</span><pre><span></span><code><a id="__codelineno-50-1" name="__codelineno-50-1" href="#__codelineno-50-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDPComp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.rs</span><pre><span></span><code><a id="__codelineno-51-1" name="__codelineno-51-1" href="#__codelineno-51-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsack_dp_comp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.c</span><pre><span></span><code><a id="__codelineno-52-1" name="__codelineno-52-1" href="#__codelineno-52-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDPComp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.kt</span><pre><span></span><code><a id="__codelineno-53-1" name="__codelineno-53-1" href="#__codelineno-53-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">knapsackDPComp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.rb</span><pre><span></span><code><a id="__codelineno-54-1" name="__codelineno-54-1" href="#__codelineno-54-1"></a><span class="o">[</span><span class="n">class</span><span class="o">]</span><span class="p">{}</span><span class="o">-[</span><span class="n">func</span><span class="o">]</span><span class="p">{</span><span class="n">knapsack_dp_comp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
<div class="tabbed-block">
|
|
<div class="highlight"><span class="filename">knapsack.zig</span><pre><span></span><code><a id="__codelineno-55-1" name="__codelineno-55-1" href="#__codelineno-55-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">knapsackDPComp</span><span class="p">}</span>
|
|
</code></pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<!-- Source file information -->
|
|
|
|
|
|
<!-- Was this page helpful? -->
|
|
|
|
|
|
|
|
|
|
<!-- Previous and next pages link -->
|
|
<nav
|
|
class="md-footer__inner md-grid"
|
|
aria-label="Footer"
|
|
|
|
>
|
|
|
|
<!-- Link to previous page -->
|
|
|
|
|
|
<a
|
|
href="../dp_solution_pipeline/"
|
|
class="md-footer__link md-footer__link--prev"
|
|
aria-label="Previous: 14.3 DP problem-solving approach¶"
|
|
rel="prev"
|
|
>
|
|
<div class="md-footer__button md-icon">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
|
</div>
|
|
<div class="md-footer__title">
|
|
<span class="md-footer__direction">
|
|
Previous
|
|
</span>
|
|
<div class="md-ellipsis">
|
|
14.3 DP problem-solving approach¶
|
|
</div>
|
|
</div>
|
|
</a>
|
|
|
|
|
|
<!-- Link to next page -->
|
|
|
|
|
|
<a
|
|
href="../unbounded_knapsack_problem/"
|
|
class="md-footer__link md-footer__link--next"
|
|
aria-label="Next: 14.5 Unbounded knapsack problem"
|
|
rel="next"
|
|
>
|
|
<div class="md-footer__title">
|
|
<span class="md-footer__direction">
|
|
Next
|
|
</span>
|
|
<div class="md-ellipsis">
|
|
14.5 Unbounded knapsack problem
|
|
</div>
|
|
</div>
|
|
<div class="md-footer__button md-icon">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
|
|
</div>
|
|
</a>
|
|
|
|
</nav>
|
|
|
|
<!-- Comment system -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<h5 align="center" id="__comments">Feel free to drop your insights, questions or suggestions</h5>
|
|
|
|
<!-- Insert generated snippet here -->
|
|
<script
|
|
src="https://giscus.app/client.js"
|
|
data-repo="krahets/hello-algo"
|
|
data-repo-id="R_kgDOIXtSqw"
|
|
data-category="Announcements"
|
|
data-category-id="DIC_kwDOIXtSq84CSZk_"
|
|
data-mapping="pathname"
|
|
data-strict="1"
|
|
data-reactions-enabled="1"
|
|
data-emit-metadata="0"
|
|
data-input-position="top"
|
|
data-theme="light"
|
|
data-lang="en"
|
|
crossorigin="anonymous"
|
|
async
|
|
>
|
|
</script>
|
|
<!-- Synchronize Giscus theme with palette -->
|
|
<script>
|
|
var giscus = document.querySelector("script[src*=giscus]")
|
|
|
|
/* Set palette on initial load */
|
|
var palette = __md_get("__palette")
|
|
if (palette && typeof palette.color === "object") {
|
|
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
|
|
giscus.setAttribute("data-theme", theme)
|
|
}
|
|
|
|
/* Register event handlers after documented loaded */
|
|
document.addEventListener("DOMContentLoaded", function() {
|
|
var ref = document.querySelector("[data-md-component=palette]")
|
|
ref.addEventListener("change", function() {
|
|
var palette = __md_get("__palette")
|
|
if (palette && typeof palette.color === "object") {
|
|
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
|
|
|
|
/* Instruct Giscus to change theme */
|
|
var frame = document.querySelector(".giscus-frame")
|
|
frame.contentWindow.postMessage(
|
|
{ giscus: { setConfig: { theme } } },
|
|
"https://giscus.app"
|
|
)
|
|
}
|
|
})
|
|
})
|
|
</script>
|
|
|
|
|
|
</article>
|
|
</div>
|
|
|
|
|
|
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
|
|
|
|
<script>var target=document.getElementById(location.hash.slice(1));target&&target.name&&(target.checked=target.name.startsWith("__tabbed_"))</script>
|
|
</div>
|
|
|
|
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
|
|
Back to top
|
|
</button>
|
|
|
|
</main>
|
|
|
|
<footer class="md-footer">
|
|
|
|
|
|
|
|
<nav class="md-footer__inner md-grid" aria-label="Footer" >
|
|
|
|
|
|
<a href="../dp_solution_pipeline/" class="md-footer__link md-footer__link--prev" aria-label="Previous: 14.3 DP problem-solving approach¶">
|
|
<div class="md-footer__button md-icon">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
|
</div>
|
|
<div class="md-footer__title">
|
|
<span class="md-footer__direction">
|
|
Previous
|
|
</span>
|
|
<div class="md-ellipsis">
|
|
14.3 DP problem-solving approach¶
|
|
</div>
|
|
</div>
|
|
</a>
|
|
|
|
|
|
|
|
<a href="../unbounded_knapsack_problem/" class="md-footer__link md-footer__link--next" aria-label="Next: 14.5 Unbounded knapsack problem">
|
|
<div class="md-footer__title">
|
|
<span class="md-footer__direction">
|
|
Next
|
|
</span>
|
|
<div class="md-ellipsis">
|
|
14.5 Unbounded knapsack problem
|
|
</div>
|
|
</div>
|
|
<div class="md-footer__button md-icon">
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
|
|
</div>
|
|
</a>
|
|
|
|
</nav>
|
|
|
|
|
|
<div class="md-footer-meta md-typeset">
|
|
<div class="md-footer-meta__inner md-grid">
|
|
<div class="md-copyright">
|
|
|
|
<div class="md-copyright__highlight">
|
|
Copyright © 2024 krahets<br>The website content is licensed under <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC BY-NC-SA 4.0</a>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
<div class="md-social">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M389.2 48h70.6L305.6 224.2 487 464H345L233.7 318.6 106.5 464H35.8l164.9-188.5L26.8 48h145.6l100.5 132.9L389.2 48zm-24.8 373.8h39.1L151.1 88h-42l255.3 333.8z"/></svg>
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.5.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
|
|
</a>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
</div>
|
|
</footer>
|
|
|
|
</div>
|
|
<div class="md-dialog" data-md-component="dialog">
|
|
<div class="md-dialog__inner md-typeset"></div>
|
|
</div>
|
|
|
|
|
|
<script id="__config" type="application/json">{"base": "../..", "features": ["announce.dismiss", "content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.b8dbb3d2.min.js", "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}}</script>
|
|
|
|
|
|
<script src="../../assets/javascripts/bundle.c18c5fb9.min.js"></script>
|
|
|
|
<script src="../../javascripts/mathjax.js"></script>
|
|
|
|
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
|
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.2/es5/tex-mml-chtml.min.js"></script>
|
|
|
|
|
|
<script>document$.subscribe(() => {const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});})</script></body>
|
|
</html> |