mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 04:36:28 +08:00
56b20eff36
* .net 8.0 migration * update docs * revert change * revert change and update appendix docs * remove static * Update binary_search_insertion.cs * Update binary_search_insertion.cs * Update binary_search_edge.cs * Update binary_search_insertion.cs * Update binary_search_edge.cs --------- Co-authored-by: Yudong Jin <krahets@163.com>
160 lines
4.7 KiB
C#
160 lines
4.7 KiB
C#
/**
|
|
* File: binary_search_tree.cs
|
|
* Created Time: 2022-12-23
|
|
* Author: haptear (haptear@hotmail.com)
|
|
*/
|
|
|
|
namespace hello_algo.chapter_tree;
|
|
|
|
class BinarySearchTree {
|
|
TreeNode? root;
|
|
|
|
public BinarySearchTree() {
|
|
// 初始化空树
|
|
root = null;
|
|
}
|
|
|
|
/* 获取二叉树根节点 */
|
|
public TreeNode? GetRoot() {
|
|
return root;
|
|
}
|
|
|
|
/* 查找节点 */
|
|
public TreeNode? Search(int num) {
|
|
TreeNode? cur = root;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur != null) {
|
|
// 目标节点在 cur 的右子树中
|
|
if (cur.val < num) cur =
|
|
cur.right;
|
|
// 目标节点在 cur 的左子树中
|
|
else if (cur.val > num)
|
|
cur = cur.left;
|
|
// 找到目标节点,跳出循环
|
|
else
|
|
break;
|
|
}
|
|
// 返回目标节点
|
|
return cur;
|
|
}
|
|
|
|
/* 插入节点 */
|
|
public void Insert(int num) {
|
|
// 若树为空,则初始化根节点
|
|
if (root == null) {
|
|
root = new TreeNode(num);
|
|
return;
|
|
}
|
|
TreeNode? cur = root, pre = null;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur != null) {
|
|
// 找到重复节点,直接返回
|
|
if (cur.val == num)
|
|
return;
|
|
pre = cur;
|
|
// 插入位置在 cur 的右子树中
|
|
if (cur.val < num)
|
|
cur = cur.right;
|
|
// 插入位置在 cur 的左子树中
|
|
else
|
|
cur = cur.left;
|
|
}
|
|
|
|
// 插入节点
|
|
TreeNode node = new(num);
|
|
if (pre != null) {
|
|
if (pre.val < num)
|
|
pre.right = node;
|
|
else
|
|
pre.left = node;
|
|
}
|
|
}
|
|
|
|
|
|
/* 删除节点 */
|
|
public void Remove(int num) {
|
|
// 若树为空,直接提前返回
|
|
if (root == null)
|
|
return;
|
|
TreeNode? cur = root, pre = null;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur != null) {
|
|
// 找到待删除节点,跳出循环
|
|
if (cur.val == num)
|
|
break;
|
|
pre = cur;
|
|
// 待删除节点在 cur 的右子树中
|
|
if (cur.val < num)
|
|
cur = cur.right;
|
|
// 待删除节点在 cur 的左子树中
|
|
else
|
|
cur = cur.left;
|
|
}
|
|
// 若无待删除节点,则直接返回
|
|
if (cur == null)
|
|
return;
|
|
// 子节点数量 = 0 or 1
|
|
if (cur.left == null || cur.right == null) {
|
|
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
|
TreeNode? child = cur.left ?? cur.right;
|
|
// 删除节点 cur
|
|
if (cur != root) {
|
|
if (pre!.left == cur)
|
|
pre.left = child;
|
|
else
|
|
pre.right = child;
|
|
} else {
|
|
// 若删除节点为根节点,则重新指定根节点
|
|
root = child;
|
|
}
|
|
}
|
|
// 子节点数量 = 2
|
|
else {
|
|
// 获取中序遍历中 cur 的下一个节点
|
|
TreeNode? tmp = cur.right;
|
|
while (tmp.left != null) {
|
|
tmp = tmp.left;
|
|
}
|
|
// 递归删除节点 tmp
|
|
Remove(tmp.val!.Value);
|
|
// 用 tmp 覆盖 cur
|
|
cur.val = tmp.val;
|
|
}
|
|
}
|
|
}
|
|
|
|
public class binary_search_tree {
|
|
[Test]
|
|
public void Test() {
|
|
/* 初始化二叉搜索树 */
|
|
BinarySearchTree bst = new();
|
|
// 请注意,不同的插入顺序会生成不同的二叉树,该序列可以生成一个完美二叉树
|
|
int[] nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
|
|
foreach (int num in nums) {
|
|
bst.Insert(num);
|
|
}
|
|
|
|
Console.WriteLine("\n初始化的二叉树为\n");
|
|
PrintUtil.PrintTree(bst.GetRoot());
|
|
|
|
/* 查找节点 */
|
|
TreeNode? node = bst.Search(7);
|
|
Console.WriteLine("\n查找到的节点对象为 " + node + ",节点值 = " + node?.val);
|
|
|
|
/* 插入节点 */
|
|
bst.Insert(16);
|
|
Console.WriteLine("\n插入节点 16 后,二叉树为\n");
|
|
PrintUtil.PrintTree(bst.GetRoot());
|
|
|
|
/* 删除节点 */
|
|
bst.Remove(1);
|
|
Console.WriteLine("\n删除节点 1 后,二叉树为\n");
|
|
PrintUtil.PrintTree(bst.GetRoot());
|
|
bst.Remove(2);
|
|
Console.WriteLine("\n删除节点 2 后,二叉树为\n");
|
|
PrintUtil.PrintTree(bst.GetRoot());
|
|
bst.Remove(4);
|
|
Console.WriteLine("\n删除节点 4 后,二叉树为\n");
|
|
PrintUtil.PrintTree(bst.GetRoot());
|
|
}
|
|
}
|