mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 01:26:28 +08:00
5c1f43fefd
* feat(kotlin): add kotlin code for dynamic programming. * Update knapsack.kt
74 lines
No EOL
1.9 KiB
Kotlin
74 lines
No EOL
1.9 KiB
Kotlin
/**
|
|
* File: unbounded_knapsack.kt
|
|
* Created Time: 2024-01-25
|
|
* Author: curtishd (1023632660@qq.com)
|
|
*/
|
|
|
|
package chapter_dynamic_programming
|
|
|
|
import kotlin.math.max
|
|
|
|
/* 完全背包:动态规划 */
|
|
fun unboundedKnapsackDP(
|
|
wgt: IntArray,
|
|
value: IntArray,
|
|
cap: Int
|
|
): Int {
|
|
val n = wgt.size
|
|
// 初始化 dp 表
|
|
val dp = Array(n + 1) { IntArray(cap + 1) }
|
|
// 状态转移
|
|
for (i in 1..n) {
|
|
for (c in 1..cap) {
|
|
if (wgt[i - 1] > c) {
|
|
// 若超过背包容量,则不选物品 i
|
|
dp[i][c] = dp[i - 1][c]
|
|
} else {
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
dp[i][c] = max(dp[i - 1][c].toDouble(), (dp[i][c - wgt[i - 1]] + value[i - 1]).toDouble())
|
|
.toInt()
|
|
}
|
|
}
|
|
}
|
|
return dp[n][cap]
|
|
}
|
|
|
|
/* 完全背包:空间优化后的动态规划 */
|
|
fun unboundedKnapsackDPComp(
|
|
wgt: IntArray,
|
|
value: IntArray,
|
|
cap: Int
|
|
): Int {
|
|
val n = wgt.size
|
|
// 初始化 dp 表
|
|
val dp = IntArray(cap + 1)
|
|
// 状态转移
|
|
for (i in 1..n) {
|
|
for (c in 1..cap) {
|
|
if (wgt[i - 1] > c) {
|
|
// 若超过背包容量,则不选物品 i
|
|
dp[c] = dp[c]
|
|
} else {
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
dp[c] =
|
|
max(dp[c].toDouble(), (dp[c - wgt[i - 1]] + value[i - 1]).toDouble()).toInt()
|
|
}
|
|
}
|
|
}
|
|
return dp[cap]
|
|
}
|
|
|
|
/* Driver Code */
|
|
fun main() {
|
|
val wgt = intArrayOf(1, 2, 3)
|
|
val value = intArrayOf(5, 11, 15)
|
|
val cap = 4
|
|
|
|
// 动态规划
|
|
var res = unboundedKnapsackDP(wgt, value, cap)
|
|
println("不超过背包容量的最大物品价值为 $res")
|
|
|
|
// 空间优化后的动态规划
|
|
res = unboundedKnapsackDPComp(wgt, value, cap)
|
|
println("不超过背包容量的最大物品价值为 $res")
|
|
} |