mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 23:46:29 +08:00
17ff091a03
* refactor: review Swift codes for chapter_computational_complexity articles * Update time_complexity.swift * Update time_complexity.swift --------- Co-authored-by: Yudong Jin <krahets@163.com>
172 lines
4.3 KiB
Swift
172 lines
4.3 KiB
Swift
/**
|
||
* File: time_complexity.swift
|
||
* Created Time: 2022-12-26
|
||
* Author: nuomi1 (nuomi1@qq.com)
|
||
*/
|
||
|
||
/* 常数阶 */
|
||
func constant(n: Int) -> Int {
|
||
var count = 0
|
||
let size = 100_000
|
||
for _ in 0 ..< size {
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
|
||
/* 线性阶 */
|
||
func linear(n: Int) -> Int {
|
||
var count = 0
|
||
for _ in 0 ..< n {
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
|
||
/* 线性阶(遍历数组) */
|
||
func arrayTraversal(nums: [Int]) -> Int {
|
||
var count = 0
|
||
// 循环次数与数组长度成正比
|
||
for _ in nums {
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
|
||
/* 平方阶 */
|
||
func quadratic(n: Int) -> Int {
|
||
var count = 0
|
||
// 循环次数与数组长度成平方关系
|
||
for _ in 0 ..< n {
|
||
for _ in 0 ..< n {
|
||
count += 1
|
||
}
|
||
}
|
||
return count
|
||
}
|
||
|
||
/* 平方阶(冒泡排序) */
|
||
func bubbleSort(nums: inout [Int]) -> Int {
|
||
var count = 0 // 计数器
|
||
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
||
for i in sequence(first: nums.count - 1, next: { $0 > 0 + 1 ? $0 - 1 : nil }) {
|
||
// 内循环:冒泡操作
|
||
for j in 0 ..< i {
|
||
if nums[j] > nums[j + 1] {
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
let tmp = nums[j]
|
||
nums[j] = nums[j + 1]
|
||
nums[j + 1] = tmp
|
||
count += 3 // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count
|
||
}
|
||
|
||
/* 指数阶(循环实现) */
|
||
func exponential(n: Int) -> Int {
|
||
var count = 0
|
||
var base = 1
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for _ in 0 ..< n {
|
||
for _ in 0 ..< base {
|
||
count += 1
|
||
}
|
||
base *= 2
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count
|
||
}
|
||
|
||
/* 指数阶(递归实现) */
|
||
func expRecur(n: Int) -> Int {
|
||
if n == 1 {
|
||
return 1
|
||
}
|
||
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
|
||
}
|
||
|
||
/* 对数阶(循环实现) */
|
||
func logarithmic(n: Double) -> Int {
|
||
var count = 0
|
||
var n = n
|
||
while n > 1 {
|
||
n = n / 2
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
|
||
/* 对数阶(递归实现) */
|
||
func logRecur(n: Double) -> Int {
|
||
if n <= 1 {
|
||
return 0
|
||
}
|
||
return logRecur(n: n / 2) + 1
|
||
}
|
||
|
||
/* 线性对数阶 */
|
||
func linearLogRecur(n: Double) -> Int {
|
||
if n <= 1 {
|
||
return 1
|
||
}
|
||
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
|
||
for _ in sequence(first: 0, next: { $0 < n - 1 ? $0 + 1 : nil }) {
|
||
count += 1
|
||
}
|
||
return count
|
||
}
|
||
|
||
/* 阶乘阶(递归实现) */
|
||
func factorialRecur(n: Int) -> Int {
|
||
if n == 0 {
|
||
return 1
|
||
}
|
||
var count = 0
|
||
// 从 1 个分裂出 n 个
|
||
for _ in 0 ..< n {
|
||
count += factorialRecur(n: n - 1)
|
||
}
|
||
return count
|
||
}
|
||
|
||
@main
|
||
enum TimeComplexity {
|
||
/* Driver Code */
|
||
static func main() {
|
||
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
||
let n = 8
|
||
print("输入数据大小 n = \(n)")
|
||
|
||
var count = constant(n: n)
|
||
print("常数阶的计算操作数量 = \(count)")
|
||
|
||
count = linear(n: n)
|
||
print("线性阶的计算操作数量 = \(count)")
|
||
count = arrayTraversal(nums: Array(repeating: 0, count: n))
|
||
print("线性阶(遍历数组)的计算操作数量 = \(count)")
|
||
|
||
count = quadratic(n: n)
|
||
print("平方阶的计算操作数量 = \(count)")
|
||
var nums = Array(sequence(first: n, next: { $0 > 0 + 1 ? $0 - 1 : nil })) // [n,n-1,...,2,1]
|
||
count = bubbleSort(nums: &nums)
|
||
print("平方阶(冒泡排序)的计算操作数量 = \(count)")
|
||
|
||
count = exponential(n: n)
|
||
print("指数阶(循环实现)的计算操作数量 = \(count)")
|
||
count = expRecur(n: n)
|
||
print("指数阶(递归实现)的计算操作数量 = \(count)")
|
||
|
||
count = logarithmic(n: Double(n))
|
||
print("对数阶(循环实现)的计算操作数量 = \(count)")
|
||
count = logRecur(n: Double(n))
|
||
print("对数阶(递归实现)的计算操作数量 = \(count)")
|
||
|
||
count = linearLogRecur(n: Double(n))
|
||
print("线性对数阶(递归实现)的计算操作数量 = \(count)")
|
||
|
||
count = factorialRecur(n: n)
|
||
print("阶乘阶(递归实现)的计算操作数量 = \(count)")
|
||
}
|
||
}
|