mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 20:36:28 +08:00
125 lines
4.1 KiB
Java
125 lines
4.1 KiB
Java
/**
|
|
* File: min_path_sum.java
|
|
* Created Time: 2023-07-10
|
|
* Author: Krahets (krahets@163.com)
|
|
*/
|
|
|
|
package chapter_dynamic_programming;
|
|
|
|
import java.util.Arrays;
|
|
|
|
public class min_path_sum {
|
|
/* 最小路径和:暴力搜索 */
|
|
static int minPathSumDFS(int[][] grid, int i, int j) {
|
|
// 若为左上角单元格,则终止搜索
|
|
if (i == 0 && j == 0) {
|
|
return grid[0][0];
|
|
}
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
if (i < 0 || j < 0) {
|
|
return Integer.MAX_VALUE;
|
|
}
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
int left = minPathSumDFS(grid, i - 1, j);
|
|
int up = minPathSumDFS(grid, i, j - 1);
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
return Math.min(left, up) + grid[i][j];
|
|
}
|
|
|
|
/* 最小路径和:记忆化搜索 */
|
|
static int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
|
|
// 若为左上角单元格,则终止搜索
|
|
if (i == 0 && j == 0) {
|
|
return grid[0][0];
|
|
}
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
if (i < 0 || j < 0) {
|
|
return Integer.MAX_VALUE;
|
|
}
|
|
// 若已有记录,则直接返回
|
|
if (mem[i][j] != -1) {
|
|
return mem[i][j];
|
|
}
|
|
// 左边和上边单元格的最小路径代价
|
|
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
|
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
mem[i][j] = Math.min(left, up) + grid[i][j];
|
|
return mem[i][j];
|
|
}
|
|
|
|
/* 最小路径和:动态规划 */
|
|
static int minPathSumDP(int[][] grid) {
|
|
int n = grid.length, m = grid[0].length;
|
|
// 初始化 dp 表
|
|
int[][] dp = new int[n][m];
|
|
dp[0][0] = grid[0][0];
|
|
// 状态转移:首行
|
|
for (int j = 1; j < m; j++) {
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|
}
|
|
// 状态转移:首列
|
|
for (int i = 1; i < n; i++) {
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|
}
|
|
// 状态转移:其余行列
|
|
for (int i = 1; i < n; i++) {
|
|
for (int j = 1; j < m; j++) {
|
|
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|
}
|
|
}
|
|
return dp[n - 1][m - 1];
|
|
}
|
|
|
|
/* 最小路径和:空间优化后的动态规划 */
|
|
static int minPathSumDPComp(int[][] grid) {
|
|
int n = grid.length, m = grid[0].length;
|
|
// 初始化 dp 表
|
|
int[] dp = new int[m];
|
|
// 状态转移:首行
|
|
dp[0] = grid[0][0];
|
|
for (int j = 1; j < m; j++) {
|
|
dp[j] = dp[j - 1] + grid[0][j];
|
|
}
|
|
// 状态转移:其余行
|
|
for (int i = 1; i < n; i++) {
|
|
// 状态转移:首列
|
|
dp[0] = dp[0] + grid[i][0];
|
|
// 状态转移:其余列
|
|
for (int j = 1; j < m; j++) {
|
|
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
|
|
}
|
|
}
|
|
return dp[m - 1];
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
int[][] grid = {
|
|
{ 1, 3, 1, 5 },
|
|
{ 2, 2, 4, 2 },
|
|
{ 5, 3, 2, 1 },
|
|
{ 4, 3, 5, 2 }
|
|
};
|
|
int n = grid.length, m = grid[0].length;
|
|
|
|
// 暴力搜索
|
|
int res = minPathSumDFS(grid, n - 1, m - 1);
|
|
System.out.println("从左上角到右下角的做小路径和为 " + res);
|
|
|
|
// 记忆化搜索
|
|
int[][] mem = new int[n][m];
|
|
for (int[] row : mem) {
|
|
Arrays.fill(row, -1);
|
|
}
|
|
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
|
|
System.out.println("从左上角到右下角的做小路径和为 " + res);
|
|
|
|
// 动态规划
|
|
res = minPathSumDP(grid);
|
|
System.out.println("从左上角到右下角的做小路径和为 " + res);
|
|
|
|
// 空间优化后的动态规划
|
|
res = minPathSumDPComp(grid);
|
|
System.out.println("从左上角到右下角的做小路径和为 " + res);
|
|
}
|
|
}
|