hello-algo/codes/python/chapter_tree/avl_tree.py
Yudong Jin 410c5d6b62 Free memory after removing
a node from a LinkedList or TreeNode.
2023-01-02 19:53:55 +08:00

208 lines
7.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
File: avl_tree.py
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
import typing
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
class AVLTree:
def __init__(self, root: typing.Optional[TreeNode] = None):
self.root = root
""" 获取结点高度 """
def height(self, node: typing.Optional[TreeNode]) -> int:
# 空结点高度为 -1 ,叶结点高度为 0
if node is not None:
return node.height
return -1
""" 更新结点高度 """
def __update_height(self, node: TreeNode):
# 结点高度等于最高子树高度 + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
""" 获取平衡因子 """
def balance_factor(self, node: TreeNode) -> int:
# 空结点平衡因子为 0
if node is None:
return 0
# 结点平衡因子 = 左子树高度 - 右子树高度
return self.height(node.left) - self.height(node.right)
""" 右旋操作 """
def __right_rotate(self, node: TreeNode) -> TreeNode:
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
child.right = node
node.left = grand_child
# 更新结点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
""" 左旋操作 """
def __left_rotate(self, node: TreeNode) -> TreeNode:
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
child.left = node
node.right = grand_child
# 更新结点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
""" 执行旋转操作,使该子树重新恢复平衡 """
def __rotate(self, node: TreeNode) -> TreeNode:
# 获取结点 node 的平衡因子
balance_factor = self.balance_factor(node)
# 左偏树
if balance_factor > 1:
if self.balance_factor(node.left) >= 0:
# 右旋
return self.__right_rotate(node)
else:
# 先左旋后右旋
node.left = self.__left_rotate(node.left)
return self.__right_rotate(node)
# 右偏树
elif balance_factor < -1:
if self.balance_factor(node.right) <= 0:
# 左旋
return self.__left_rotate(node)
else:
# 先右旋后左旋
node.right = self.__right_rotate(node.right)
return self.__left_rotate(node)
# 平衡树,无需旋转,直接返回
return node
""" 插入结点 """
def insert(self, val) -> TreeNode:
self.root = self.__insert_helper(self.root, val)
return self.root
""" 递归插入结点(辅助函数)"""
def __insert_helper(self, node: typing.Optional[TreeNode], val: int) -> TreeNode:
if node is None:
return TreeNode(val)
# 1. 查找插入位置,并插入结点
if val < node.val:
node.left = self.__insert_helper(node.left, val)
elif val > node.val:
node.right = self.__insert_helper(node.right, val)
else:
# 重复结点不插入,直接返回
return node
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
""" 删除结点 """
def remove(self, val: int):
root = self.__remove_helper(self.root, val)
return root
""" 递归删除结点(辅助函数) """
def __remove_helper(self, node: typing.Optional[TreeNode], val: int) -> typing.Optional[TreeNode]:
if node is None:
return None
# 1. 查找结点,并删除之
if val < node.val:
node.left = self.__remove_helper(node.left, val)
elif val > node.val:
node.right = self.__remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
# 子结点数量 = 0 ,直接删除 node 并返回
if child is None:
return None
# 子结点数量 = 1 ,直接删除 node
else:
node = child
else: # 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
temp = self.__get_inorder_next(node.right)
node.right = self.__remove_helper(node.right, temp.val)
node.val = temp.val
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
""" 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) """
def __get_inorder_next(self, node: typing.Optional[TreeNode]) -> typing.Optional[TreeNode]:
if node is None:
return None
# 循环访问左子结点,直到叶结点时为最小结点,跳出
while node.left is not None:
node = node.left
return node
""" 查找结点 """
def search(self, val: int):
cur = self.root
# 循环查找,越过叶结点后跳出
while cur is not None:
# 目标结点在 root 的右子树中
if cur.val < val:
cur = cur.right
# 目标结点在 root 的左子树中
elif cur.val > val:
cur = cur.left
# 找到目标结点,跳出循环
else:
break
# 返回目标结点
return cur
""" Driver Code """
if __name__ == "__main__":
def test_insert(tree: AVLTree, val: int):
tree.insert(val)
print("\n插入结点 {}AVL 树为".format(val))
print_tree(tree.root)
def test_remove(tree: AVLTree, val: int):
tree.remove(val)
print("\n删除结点 {}AVL 树为".format(val))
print_tree(tree.root)
# 初始化空 AVL 树
avl_tree = AVLTree()
# 插入结点
# 请关注插入结点后AVL 树是如何保持平衡的
test_insert(avl_tree, 1)
test_insert(avl_tree, 2)
test_insert(avl_tree, 3)
test_insert(avl_tree, 4)
test_insert(avl_tree, 5)
test_insert(avl_tree, 8)
test_insert(avl_tree, 7)
test_insert(avl_tree, 9)
test_insert(avl_tree, 10)
test_insert(avl_tree, 6)
# 插入重复结点
test_insert(avl_tree, 7)
# 删除结点
# 请关注删除结点后AVL 树是如何保持平衡的
test_remove(avl_tree, 8) # 删除度为 0 的结点
test_remove(avl_tree, 5) # 删除度为 1 的结点
test_remove(avl_tree, 4) # 删除度为 2 的结点
result_node = avl_tree.search(7)
print("\n查找到的结点对象为 {},结点值 = {}".format(result_node, result_node.val))