mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 14:36:28 +08:00
300016393b
Fix "函数" and "方法"
259 lines
7.5 KiB
Java
259 lines
7.5 KiB
Java
/**
|
||
* File: avl_tree.cs
|
||
* Created Time: 2022-12-23
|
||
* Author: haptear (haptear@hotmail.com)
|
||
*/
|
||
|
||
using hello_algo.include;
|
||
using NUnit.Framework;
|
||
|
||
namespace hello_algo.chapter_tree;
|
||
|
||
/* AVL 树 */
|
||
class AVLTree
|
||
{
|
||
public TreeNode? root; // 根结点
|
||
|
||
/* 获取结点高度 */
|
||
public int height(TreeNode? node)
|
||
{
|
||
// 空结点高度为 -1 ,叶结点高度为 0
|
||
return node == null ? -1 : node.height;
|
||
}
|
||
|
||
/* 更新结点高度 */
|
||
private void updateHeight(TreeNode node)
|
||
{
|
||
// 结点高度等于最高子树高度 + 1
|
||
node.height = Math.Max(height(node.left), height(node.right)) + 1;
|
||
}
|
||
|
||
/* 获取平衡因子 */
|
||
public int balanceFactor(TreeNode? node)
|
||
{
|
||
// 空结点平衡因子为 0
|
||
if (node == null) return 0;
|
||
// 结点平衡因子 = 左子树高度 - 右子树高度
|
||
return height(node.left) - height(node.right);
|
||
}
|
||
|
||
/* 右旋操作 */
|
||
TreeNode? rightRotate(TreeNode? node)
|
||
{
|
||
TreeNode? child = node.left;
|
||
TreeNode? grandChild = child?.right;
|
||
// 以 child 为原点,将 node 向右旋转
|
||
child.right = node;
|
||
node.left = grandChild;
|
||
// 更新结点高度
|
||
updateHeight(node);
|
||
updateHeight(child);
|
||
// 返回旋转后子树的根结点
|
||
return child;
|
||
}
|
||
|
||
/* 左旋操作 */
|
||
TreeNode? leftRotate(TreeNode? node)
|
||
{
|
||
TreeNode? child = node.right;
|
||
TreeNode? grandChild = child?.left;
|
||
// 以 child 为原点,将 node 向左旋转
|
||
child.left = node;
|
||
node.right = grandChild;
|
||
// 更新结点高度
|
||
updateHeight(node);
|
||
updateHeight(child);
|
||
// 返回旋转后子树的根结点
|
||
return child;
|
||
}
|
||
|
||
/* 执行旋转操作,使该子树重新恢复平衡 */
|
||
TreeNode? rotate(TreeNode? node)
|
||
{
|
||
// 获取结点 node 的平衡因子
|
||
int balanceFactorInt = balanceFactor(node);
|
||
// 左偏树
|
||
if (balanceFactorInt > 1)
|
||
{
|
||
if (balanceFactor(node.left) >= 0)
|
||
{
|
||
// 右旋
|
||
return rightRotate(node);
|
||
}
|
||
else
|
||
{
|
||
// 先左旋后右旋
|
||
node.left = leftRotate(node?.left);
|
||
return rightRotate(node);
|
||
}
|
||
}
|
||
// 右偏树
|
||
if (balanceFactorInt < -1)
|
||
{
|
||
if (balanceFactor(node.right) <= 0)
|
||
{
|
||
// 左旋
|
||
return leftRotate(node);
|
||
}
|
||
else
|
||
{
|
||
// 先右旋后左旋
|
||
node.right = rightRotate(node?.right);
|
||
return leftRotate(node);
|
||
}
|
||
}
|
||
// 平衡树,无需旋转,直接返回
|
||
return node;
|
||
}
|
||
|
||
/* 插入结点 */
|
||
public TreeNode? insert(int val)
|
||
{
|
||
root = insertHelper(root, val);
|
||
return root;
|
||
}
|
||
|
||
/* 递归插入结点(辅助方法) */
|
||
private TreeNode? insertHelper(TreeNode? node, int val)
|
||
{
|
||
if (node == null) return new TreeNode(val);
|
||
/* 1. 查找插入位置,并插入结点 */
|
||
if (val < node.val)
|
||
node.left = insertHelper(node.left, val);
|
||
else if (val > node.val)
|
||
node.right = insertHelper(node.right, val);
|
||
else
|
||
return node; // 重复结点不插入,直接返回
|
||
updateHeight(node); // 更新结点高度
|
||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||
node = rotate(node);
|
||
// 返回子树的根结点
|
||
return node;
|
||
}
|
||
|
||
/* 删除结点 */
|
||
public TreeNode? remove(int val)
|
||
{
|
||
root = removeHelper(root, val);
|
||
return root;
|
||
}
|
||
|
||
/* 递归删除结点(辅助方法) */
|
||
private TreeNode? removeHelper(TreeNode? node, int val)
|
||
{
|
||
if (node == null) return null;
|
||
/* 1. 查找结点,并删除之 */
|
||
if (val < node.val)
|
||
node.left = removeHelper(node.left, val);
|
||
else if (val > node.val)
|
||
node.right = removeHelper(node.right, val);
|
||
else
|
||
{
|
||
if (node.left == null || node.right == null)
|
||
{
|
||
TreeNode? child = node.left != null ? node.left : node.right;
|
||
// 子结点数量 = 0 ,直接删除 node 并返回
|
||
if (child == null)
|
||
return null;
|
||
// 子结点数量 = 1 ,直接删除 node
|
||
else
|
||
node = child;
|
||
}
|
||
else
|
||
{
|
||
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
|
||
TreeNode? temp = getInOrderNext(node.right);
|
||
node.right = removeHelper(node.right, temp.val);
|
||
node.val = temp.val;
|
||
}
|
||
}
|
||
updateHeight(node); // 更新结点高度
|
||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||
node = rotate(node);
|
||
// 返回子树的根结点
|
||
return node;
|
||
}
|
||
|
||
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
|
||
private TreeNode? getInOrderNext(TreeNode? node)
|
||
{
|
||
if (node == null) return node;
|
||
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
||
while (node.left != null)
|
||
{
|
||
node = node.left;
|
||
}
|
||
return node;
|
||
}
|
||
|
||
/* 查找结点 */
|
||
public TreeNode? search(int val)
|
||
{
|
||
TreeNode? cur = root;
|
||
// 循环查找,越过叶结点后跳出
|
||
while (cur != null)
|
||
{
|
||
// 目标结点在 cur 的右子树中
|
||
if (cur.val < val)
|
||
cur = cur.right;
|
||
// 目标结点在 cur 的左子树中
|
||
else if (cur.val > val)
|
||
cur = cur.left;
|
||
// 找到目标结点,跳出循环
|
||
else
|
||
break;
|
||
}
|
||
// 返回目标结点
|
||
return cur;
|
||
}
|
||
}
|
||
|
||
public class avl_tree
|
||
{
|
||
static void testInsert(AVLTree tree, int val)
|
||
{
|
||
tree.insert(val);
|
||
Console.WriteLine("\n插入结点 " + val + " 后,AVL 树为");
|
||
PrintUtil.PrintTree(tree.root);
|
||
}
|
||
|
||
static void testRemove(AVLTree tree, int val)
|
||
{
|
||
tree.remove(val);
|
||
Console.WriteLine("\n删除结点 " + val + " 后,AVL 树为");
|
||
PrintUtil.PrintTree(tree.root);
|
||
}
|
||
|
||
[Test]
|
||
public void Test()
|
||
{
|
||
/* 初始化空 AVL 树 */
|
||
AVLTree avlTree = new AVLTree();
|
||
|
||
/* 插入结点 */
|
||
// 请关注插入结点后,AVL 树是如何保持平衡的
|
||
testInsert(avlTree, 1);
|
||
testInsert(avlTree, 2);
|
||
testInsert(avlTree, 3);
|
||
testInsert(avlTree, 4);
|
||
testInsert(avlTree, 5);
|
||
testInsert(avlTree, 8);
|
||
testInsert(avlTree, 7);
|
||
testInsert(avlTree, 9);
|
||
testInsert(avlTree, 10);
|
||
testInsert(avlTree, 6);
|
||
|
||
/* 插入重复结点 */
|
||
testInsert(avlTree, 7);
|
||
|
||
/* 删除结点 */
|
||
// 请关注删除结点后,AVL 树是如何保持平衡的
|
||
testRemove(avlTree, 8); // 删除度为 0 的结点
|
||
testRemove(avlTree, 5); // 删除度为 1 的结点
|
||
testRemove(avlTree, 4); // 删除度为 2 的结点
|
||
|
||
/* 查询结点 */
|
||
TreeNode? node = avlTree.search(7);
|
||
Console.WriteLine("\n查找到的结点对象为 " + node + ",结点值 = " + node?.val);
|
||
}
|
||
}
|