mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 13:46:29 +08:00
123 lines
4.1 KiB
Python
123 lines
4.1 KiB
Python
"""
|
|
File: edit_distancde.py
|
|
Created Time: 2023-07-04
|
|
Author: Krahets (krahets@163.com)
|
|
"""
|
|
|
|
|
|
def edit_distance_dfs(s: str, t: str, i: int, j: int) -> int:
|
|
"""编辑距离:暴力搜索"""
|
|
# 若 s 和 t 都为空,则返回 0
|
|
if i == 0 and j == 0:
|
|
return 0
|
|
# 若 s 为空,则返回 t 长度
|
|
if i == 0:
|
|
return j
|
|
# 若 t 为空,则返回 s 长度
|
|
if j == 0:
|
|
return i
|
|
# 若两字符相等,则直接跳过此两字符
|
|
if s[i - 1] == t[j - 1]:
|
|
return edit_distance_dfs(s, t, i - 1, j - 1)
|
|
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
|
insert = edit_distance_dfs(s, t, i, j - 1)
|
|
delete = edit_distance_dfs(s, t, i - 1, j)
|
|
replace = edit_distance_dfs(s, t, i - 1, j - 1)
|
|
# 返回最少编辑步数
|
|
return min(insert, delete, replace) + 1
|
|
|
|
|
|
def edit_distance_dfs_mem(s: str, t: str, mem: list[list[int]], i: int, j: int) -> int:
|
|
"""编辑距离:记忆化搜索"""
|
|
# 若 s 和 t 都为空,则返回 0
|
|
if i == 0 and j == 0:
|
|
return 0
|
|
# 若 s 为空,则返回 t 长度
|
|
if i == 0:
|
|
return j
|
|
# 若 t 为空,则返回 s 长度
|
|
if j == 0:
|
|
return i
|
|
# 若已有记录,则直接返回之
|
|
if mem[i][j] != -1:
|
|
return mem[i][j]
|
|
# 若两字符相等,则直接跳过此两字符
|
|
if s[i - 1] == t[j - 1]:
|
|
return edit_distance_dfs_mem(s, t, mem, i - 1, j - 1)
|
|
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
|
insert = edit_distance_dfs_mem(s, t, mem, i, j - 1)
|
|
delete = edit_distance_dfs_mem(s, t, mem, i - 1, j)
|
|
replace = edit_distance_dfs_mem(s, t, mem, i - 1, j - 1)
|
|
# 记录并返回最少编辑步数
|
|
mem[i][j] = min(insert, delete, replace) + 1
|
|
return mem[i][j]
|
|
|
|
|
|
def edit_distance_dp(s: str, t: str) -> int:
|
|
"""编辑距离:动态规划"""
|
|
n, m = len(s), len(t)
|
|
dp = [[0] * (m + 1) for _ in range(n + 1)]
|
|
# 状态转移:首行首列
|
|
for i in range(1, n + 1):
|
|
dp[i][0] = i
|
|
for j in range(1, m + 1):
|
|
dp[0][j] = j
|
|
# 状态转移:其余行列
|
|
for i in range(1, n + 1):
|
|
for j in range(1, m + 1):
|
|
if s[i - 1] == t[j - 1]:
|
|
# 若两字符相等,则直接跳过此两字符
|
|
dp[i][j] = dp[i - 1][j - 1]
|
|
else:
|
|
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
|
|
return dp[n][m]
|
|
|
|
|
|
def edit_distance_dp_comp(s: str, t: str) -> int:
|
|
"""编辑距离:状态压缩后的动态规划"""
|
|
n, m = len(s), len(t)
|
|
dp = [0] * (m + 1)
|
|
# 状态转移:首行
|
|
for j in range(1, m + 1):
|
|
dp[j] = j
|
|
# 状态转移:其余行
|
|
for i in range(1, n + 1):
|
|
# 状态转移:首列
|
|
leftup = dp[0] # 暂存 dp[i-1, j-1]
|
|
dp[0] += 1
|
|
# 状态转移:其余列
|
|
for j in range(1, m + 1):
|
|
temp = dp[j]
|
|
if s[i - 1] == t[j - 1]:
|
|
# 若两字符相等,则直接跳过此两字符
|
|
dp[j] = leftup
|
|
else:
|
|
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
|
dp[j] = min(dp[j - 1], dp[j], leftup) + 1
|
|
leftup = temp # 更新为下一轮的 dp[i-1, j-1]
|
|
return dp[m]
|
|
|
|
|
|
"""Driver Code"""
|
|
if __name__ == "__main__":
|
|
s = "bag"
|
|
t = "pack"
|
|
n, m = len(s), len(t)
|
|
|
|
# 暴力搜索
|
|
res = edit_distance_dfs(s, t, n, m)
|
|
print(f"将 {s} 更改为 {t} 最少需要编辑 {res} 步")
|
|
|
|
# 记忆化搜索
|
|
mem = [[-1] * (m + 1) for _ in range(n + 1)]
|
|
res = edit_distance_dfs_mem(s, t, mem, n, m)
|
|
print(f"将 {s} 更改为 {t} 最少需要编辑 {res} 步")
|
|
|
|
# 动态规划
|
|
res = edit_distance_dp(s, t)
|
|
print(f"将 {s} 更改为 {t} 最少需要编辑 {res} 步")
|
|
|
|
# 状态压缩后的动态规划
|
|
res = edit_distance_dp_comp(s, t)
|
|
print(f"将 {s} 更改为 {t} 最少需要编辑 {res} 步")
|