mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-28 06:26:27 +08:00
116 lines
3.9 KiB
C++
116 lines
3.9 KiB
C++
/**
|
|
* File: min_path_sum.cpp
|
|
* Created Time: 2023-07-10
|
|
* Author: krahets (krahets@163.com)
|
|
*/
|
|
|
|
#include "../utils/common.hpp"
|
|
|
|
/* Minimum path sum: Brute force search */
|
|
int minPathSumDFS(vector<vector<int>> &grid, int i, int j) {
|
|
// If it's the top-left cell, terminate the search
|
|
if (i == 0 && j == 0) {
|
|
return grid[0][0];
|
|
}
|
|
// If the row or column index is out of bounds, return a +∞ cost
|
|
if (i < 0 || j < 0) {
|
|
return INT_MAX;
|
|
}
|
|
// Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1)
|
|
int up = minPathSumDFS(grid, i - 1, j);
|
|
int left = minPathSumDFS(grid, i, j - 1);
|
|
// Return the minimum path cost from the top-left to (i, j)
|
|
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
|
}
|
|
|
|
/* Minimum path sum: Memoized search */
|
|
int minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {
|
|
// If it's the top-left cell, terminate the search
|
|
if (i == 0 && j == 0) {
|
|
return grid[0][0];
|
|
}
|
|
// If the row or column index is out of bounds, return a +∞ cost
|
|
if (i < 0 || j < 0) {
|
|
return INT_MAX;
|
|
}
|
|
// If there is a record, return it
|
|
if (mem[i][j] != -1) {
|
|
return mem[i][j];
|
|
}
|
|
// The minimum path cost from the left and top cells
|
|
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|
// Record and return the minimum path cost from the top-left to (i, j)
|
|
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
|
return mem[i][j];
|
|
}
|
|
|
|
/* Minimum path sum: Dynamic programming */
|
|
int minPathSumDP(vector<vector<int>> &grid) {
|
|
int n = grid.size(), m = grid[0].size();
|
|
// Initialize dp table
|
|
vector<vector<int>> dp(n, vector<int>(m));
|
|
dp[0][0] = grid[0][0];
|
|
// State transition: first row
|
|
for (int j = 1; j < m; j++) {
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|
}
|
|
// State transition: first column
|
|
for (int i = 1; i < n; i++) {
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|
}
|
|
// State transition: the rest of the rows and columns
|
|
for (int i = 1; i < n; i++) {
|
|
for (int j = 1; j < m; j++) {
|
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|
}
|
|
}
|
|
return dp[n - 1][m - 1];
|
|
}
|
|
|
|
/* Minimum path sum: Space-optimized dynamic programming */
|
|
int minPathSumDPComp(vector<vector<int>> &grid) {
|
|
int n = grid.size(), m = grid[0].size();
|
|
// Initialize dp table
|
|
vector<int> dp(m);
|
|
// State transition: first row
|
|
dp[0] = grid[0][0];
|
|
for (int j = 1; j < m; j++) {
|
|
dp[j] = dp[j - 1] + grid[0][j];
|
|
}
|
|
// State transition: the rest of the rows
|
|
for (int i = 1; i < n; i++) {
|
|
// State transition: first column
|
|
dp[0] = dp[0] + grid[i][0];
|
|
// State transition: the rest of the columns
|
|
for (int j = 1; j < m; j++) {
|
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
|
|
}
|
|
}
|
|
return dp[m - 1];
|
|
}
|
|
|
|
/* Driver Code */
|
|
int main() {
|
|
vector<vector<int>> grid = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
|
|
int n = grid.size(), m = grid[0].size();
|
|
|
|
// Brute force search
|
|
int res = minPathSumDFS(grid, n - 1, m - 1);
|
|
cout << "The minimum path sum from the top left corner to the bottom right corner is " << res << endl;
|
|
|
|
// Memoized search
|
|
vector<vector<int>> mem(n, vector<int>(m, -1));
|
|
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
|
|
cout << "The minimum path sum from the top left corner to the bottom right corner is " << res << endl;
|
|
|
|
// Dynamic programming
|
|
res = minPathSumDP(grid);
|
|
cout << "The minimum path sum from the top left corner to the bottom right corner is " << res << endl;
|
|
|
|
// Space-optimized dynamic programming
|
|
res = minPathSumDPComp(grid);
|
|
cout << "The minimum path sum from the top left corner to the bottom right corner is " << res << endl;
|
|
|
|
return 0;
|
|
}
|