mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-25 22:06:27 +08:00
5725b8a0f1
* style(kotlin): Improve kotlin codes readability. * remove redundant quotes.
132 lines
No EOL
3.5 KiB
Kotlin
132 lines
No EOL
3.5 KiB
Kotlin
/**
|
|
* File: min_path_sum.kt
|
|
* Created Time: 2024-01-25
|
|
* Author: curtishd (1023632660@qq.com)
|
|
*/
|
|
|
|
package chapter_dynamic_programming
|
|
|
|
import kotlin.math.min
|
|
|
|
/* 最小路径和:暴力搜索 */
|
|
fun minPathSumDFS(grid: Array<IntArray>, i: Int, j: Int): Int {
|
|
// 若为左上角单元格,则终止搜索
|
|
if (i == 0 && j == 0) {
|
|
return grid[0][0]
|
|
}
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
if (i < 0 || j < 0) {
|
|
return Int.MAX_VALUE
|
|
}
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
val up = minPathSumDFS(grid, i - 1, j)
|
|
val left = minPathSumDFS(grid, i, j - 1)
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
return min(left, up) + grid[i][j]
|
|
}
|
|
|
|
/* 最小路径和:记忆化搜索 */
|
|
fun minPathSumDFSMem(
|
|
grid: Array<IntArray>,
|
|
mem: Array<IntArray>,
|
|
i: Int,
|
|
j: Int
|
|
): Int {
|
|
// 若为左上角单元格,则终止搜索
|
|
if (i == 0 && j == 0) {
|
|
return grid[0][0]
|
|
}
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
if (i < 0 || j < 0) {
|
|
return Int.MAX_VALUE
|
|
}
|
|
// 若已有记录,则直接返回
|
|
if (mem[i][j] != -1) {
|
|
return mem[i][j]
|
|
}
|
|
// 左边和上边单元格的最小路径代价
|
|
val up = minPathSumDFSMem(grid, mem, i - 1, j)
|
|
val left = minPathSumDFSMem(grid, mem, i, j - 1)
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
mem[i][j] = min(left, up) + grid[i][j]
|
|
return mem[i][j]
|
|
}
|
|
|
|
/* 最小路径和:动态规划 */
|
|
fun minPathSumDP(grid: Array<IntArray>): Int {
|
|
val n = grid.size
|
|
val m = grid[0].size
|
|
// 初始化 dp 表
|
|
val dp = Array(n) { IntArray(m) }
|
|
dp[0][0] = grid[0][0]
|
|
// 状态转移:首行
|
|
for (j in 1..<m) {
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
|
}
|
|
// 状态转移:首列
|
|
for (i in 1..<n) {
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
|
}
|
|
// 状态转移:其余行和列
|
|
for (i in 1..<n) {
|
|
for (j in 1..<m) {
|
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
|
|
}
|
|
}
|
|
return dp[n - 1][m - 1]
|
|
}
|
|
|
|
/* 最小路径和:空间优化后的动态规划 */
|
|
fun minPathSumDPComp(grid: Array<IntArray>): Int {
|
|
val n = grid.size
|
|
val m = grid[0].size
|
|
// 初始化 dp 表
|
|
val dp = IntArray(m)
|
|
// 状态转移:首行
|
|
dp[0] = grid[0][0]
|
|
for (j in 1..<m) {
|
|
dp[j] = dp[j - 1] + grid[0][j]
|
|
}
|
|
// 状态转移:其余行
|
|
for (i in 1..<n) {
|
|
// 状态转移:首列
|
|
dp[0] = dp[0] + grid[i][0]
|
|
// 状态转移:其余列
|
|
for (j in 1..<m) {
|
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
|
|
}
|
|
}
|
|
return dp[m - 1]
|
|
}
|
|
|
|
/* Driver Code */
|
|
fun main() {
|
|
val grid = arrayOf(
|
|
intArrayOf(1, 3, 1, 5),
|
|
intArrayOf(2, 2, 4, 2),
|
|
intArrayOf(5, 3, 2, 1),
|
|
intArrayOf(4, 3, 5, 2)
|
|
)
|
|
val n = grid.size
|
|
val m = grid[0].size
|
|
|
|
// 暴力搜索
|
|
var res = minPathSumDFS(grid, n - 1, m - 1)
|
|
println("从左上角到右下角的最小路径和为 $res")
|
|
|
|
// 记忆化搜索
|
|
val mem = Array(n) { IntArray(m) }
|
|
for (row in mem) {
|
|
row.fill(-1)
|
|
}
|
|
res = minPathSumDFSMem(grid, mem, n - 1, m - 1)
|
|
println("从左上角到右下角的最小路径和为 $res")
|
|
|
|
// 动态规划
|
|
res = minPathSumDP(grid)
|
|
println("从左上角到右下角的最小路径和为 $res")
|
|
|
|
// 空间优化后的动态规划
|
|
res = minPathSumDPComp(grid)
|
|
println("从左上角到右下角的最小路径和为 $res")
|
|
} |