hello-algo/chapter_computational_complexity/time_complexity/index.html
2023-11-09 05:13:54 +08:00

6787 lines
No EOL
756 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="zh" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="动画图解、一键运行的数据结构与算法教程">
<meta name="author" content="Krahets">
<link rel="canonical" href="https://www.hello-algo.com/chapter_computational_complexity/time_complexity/">
<link rel="prev" href="../iteration_and_recursion/">
<link rel="next" href="../space_complexity/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.5.3, mkdocs-material-9.4.1">
<title>2.3   时间复杂度 - Hello 算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.72749a73.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.a5377069.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
<link href="../../assets/stylesheets/glightbox.min.css" rel="stylesheet"/><style>
html.glightbox-open { overflow: initial; height: 100%; }
.gslide-title { margin-top: 0px; user-select: text; }
.gslide-desc { color: #666; user-select: text; }
.gslide-image img { background: white; }
.gscrollbar-fixer { padding-right: 15px; }
.gdesc-inner { font-size: 0.75rem; }
body[data-md-color-scheme="slate"] .gdesc-inner { background: var(--md-default-bg-color);}
body[data-md-color-scheme="slate"] .gslide-title { color: var(--md-default-fg-color);}
body[data-md-color-scheme="slate"] .gslide-desc { color: var(--md-default-fg-color);}
</style> <script src="../../assets/javascripts/glightbox.min.js"></script></head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo">
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#23" class="md-skip">
跳转至
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header md-header--shadow" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="页眉">
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
2.3 &nbsp; 时间复杂度
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="grey" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M7.5 2c-1.79 1.15-3 3.18-3 5.5s1.21 4.35 3.03 5.5C4.46 13 2 10.54 2 7.5A5.5 5.5 0 0 1 7.5 2m11.57 1.5 1.43 1.43L4.93 20.5 3.5 19.07 19.07 3.5m-6.18 2.43L11.41 5 9.97 6l.42-1.7L9 3.24l1.75-.12.58-1.65L12 3.1l1.73.03-1.35 1.13.51 1.67m-3.3 3.61-1.16-.73-1.12.78.34-1.32-1.09-.83 1.36-.09.45-1.29.51 1.27 1.36.03-1.05.87.4 1.31M19 13.5a5.5 5.5 0 0 1-5.5 5.5c-1.22 0-2.35-.4-3.26-1.07l7.69-7.69c.67.91 1.07 2.04 1.07 3.26m-4.4 6.58 2.77-1.15-.24 3.35-2.53-2.2m4.33-2.7 1.15-2.77 2.2 2.54-3.35.23m1.15-4.96-1.14-2.78 3.34.24-2.2 2.54M9.63 18.93l2.77 1.15-2.53 2.19-.24-3.34Z"/></svg>
</label>
</form>
<div class="md-header__option">
<div class="md-select">
<button class="md-header__button md-icon" aria-label="选择当前语言">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12.87 15.07-2.54-2.51.03-.03A17.52 17.52 0 0 0 14.07 6H17V4h-7V2H8v2H1v2h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04M18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12m-2.62 7 1.62-4.33L19.12 17h-3.24Z"/></svg>
</button>
<div class="md-select__inner">
<ul class="md-select__list">
<li class="md-select__item">
<a href="/" hreflang="zh" class="md-select__link">
中文
</a>
</li>
</ul>
</div>
</div>
</div>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="查找">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜索引擎
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.svg" alt="logo">
</a>
Hello 算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_preface/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M21 4H3a2 2 0 0 0-2 2v13a2 2 0 0 0 2 2h18a2 2 0 0 0 2-2V6a2 2 0 0 0-2-2M3 19V6h8v13H3m18 0h-8V6h8v13m-7-9.5h6V11h-6V9.5m0 2.5h6v1.5h-6V12m0 2.5h6V16h-6v-1.5Z"/></svg>
<span class="md-ellipsis">
第 0 章 &nbsp; 前言
</span>
</a>
<label class="md-nav__link " for="__nav_1">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
第 0 章 &nbsp; 前言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
<span class="md-ellipsis">
0.1 &nbsp; 关于本书
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
<span class="md-ellipsis">
0.2 &nbsp; 如何使用本书
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/summary/" class="md-nav__link">
<span class="md-ellipsis">
0.3 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_introduction/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2m0 16H5V5h14v14M6.2 7.7h5v1.5h-5V7.7m6.8 8.1h5v1.5h-5v-1.5m0-2.6h5v1.5h-5v-1.5M8 18h1.5v-2h2v-1.5h-2v-2H8v2H6V16h2v2m6.1-7.1 1.4-1.4 1.4 1.4 1.1-1-1.4-1.4L18 7.1 16.9 6l-1.4 1.4L14.1 6 13 7.1l1.4 1.4L13 9.9l1.1 1Z"/></svg>
<span class="md-ellipsis">
第 1 章 &nbsp; 初识算法
</span>
</a>
<label class="md-nav__link " for="__nav_2">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
第 1 章 &nbsp; 初识算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
<span class="md-ellipsis">
1.1 &nbsp; 算法无处不在
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
<span class="md-ellipsis">
1.2 &nbsp; 算法是什么
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/summary/" class="md-nav__link">
<span class="md-ellipsis">
1.3 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" checked>
<div class="md-nav__link md-nav__container">
<a href="../" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M6 2h12v6l-4 4 4 4v6H6v-6l4-4-4-4V2m10 14.5-4-4-4 4V20h8v-3.5m-4-5 4-4V4H8v3.5l4 4M10 6h4v.75l-2 2-2-2V6Z"/></svg>
<span class="md-ellipsis">
第 2 章 &nbsp; 复杂度分析
</span>
</a>
<label class="md-nav__link " for="__nav_3">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
第 2 章 &nbsp; 复杂度分析
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../performance_evaluation/" class="md-nav__link">
<span class="md-ellipsis">
2.1 &nbsp; 算法效率评估
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../iteration_and_recursion/" class="md-nav__link">
<span class="md-ellipsis">
2.2 &nbsp; 迭代与递归
</span>
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
<span class="md-ellipsis">
2.3 &nbsp; 时间复杂度
</span>
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
<span class="md-ellipsis">
2.3 &nbsp; 时间复杂度
</span>
</a>
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#231" class="md-nav__link">
2.3.1 &nbsp; 统计时间增长趋势
</a>
</li>
<li class="md-nav__item">
<a href="#232" class="md-nav__link">
2.3.2 &nbsp; 函数渐近上界
</a>
</li>
<li class="md-nav__item">
<a href="#233" class="md-nav__link">
2.3.3 &nbsp; 推算方法
</a>
<nav class="md-nav" aria-label="2.3.3   推算方法">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
1. &nbsp; 第一步:统计操作数量
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
2. &nbsp; 第二步:判断渐近上界
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#234" class="md-nav__link">
2.3.4 &nbsp; 常见类型
</a>
<nav class="md-nav" aria-label="2.3.4   常见类型">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1-o1" class="md-nav__link">
1. &nbsp; 常数阶 \(O(1)\)
</a>
</li>
<li class="md-nav__item">
<a href="#2-on" class="md-nav__link">
2. &nbsp; 线性阶 \(O(n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#3-on2" class="md-nav__link">
3. &nbsp; 平方阶 \(O(n^2)\)
</a>
</li>
<li class="md-nav__item">
<a href="#4-o2n" class="md-nav__link">
4. &nbsp; 指数阶 \(O(2^n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#5-olog-n" class="md-nav__link">
5. &nbsp; 对数阶 \(O(\log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#6-on-log-n" class="md-nav__link">
6. &nbsp; 线性对数阶 \(O(n \log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#7-on" class="md-nav__link">
7. &nbsp; 阶乘阶 \(O(n!)\)
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#235" class="md-nav__link">
2.3.5 &nbsp; 最差、最佳、平均时间复杂度
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../space_complexity/" class="md-nav__link">
<span class="md-ellipsis">
2.4 &nbsp; 空间复杂度
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
<span class="md-ellipsis">
2.5 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_data_structure/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 13.5v8H3v-8h8m-2 2H5v4h4v-4M12 2l5.5 9h-11L12 2m0 3.86L10.08 9h3.84L12 5.86M17.5 13c2.5 0 4.5 2 4.5 4.5S20 22 17.5 22 13 20 13 17.5s2-4.5 4.5-4.5m0 2a2.5 2.5 0 0 0-2.5 2.5 2.5 2.5 0 0 0 2.5 2.5 2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-2.5-2.5Z"/></svg>
<span class="md-ellipsis">
第 3 章 &nbsp; 数据结构
</span>
</a>
<label class="md-nav__link " for="__nav_4">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
第 3 章 &nbsp; 数据结构
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
<span class="md-ellipsis">
3.1 &nbsp; 数据结构分类
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
<span class="md-ellipsis">
3.2 &nbsp; 基本数据类型
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.3 &nbsp; 数字编码 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
<span class="md-ellipsis">
3.4 &nbsp; 字符编码 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
<span class="md-ellipsis">
3.5 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_array_and_linkedlist/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 5v14h17V5H3m4 2v2H5V7h2m-2 6v-2h2v2H5m0 2h2v2H5v-2m13 2H9v-2h9v2m0-4H9v-2h9v2m0-4H9V7h9v2Z"/></svg>
<span class="md-ellipsis">
第 4 章 &nbsp; 数组与链表
</span>
</a>
<label class="md-nav__link " for="__nav_5">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
第 4 章 &nbsp; 数组与链表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
<span class="md-ellipsis">
4.1 &nbsp; 数组
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
<span class="md-ellipsis">
4.2 &nbsp; 链表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
<span class="md-ellipsis">
4.3 &nbsp; 列表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
<span class="md-ellipsis">
4.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_stack_and_queue/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17.36 20.2v-5.38h1.79V22H3v-7.18h1.8v5.38h12.56M6.77 14.32l.37-1.76 8.79 1.85-.37 1.76-8.79-1.85m1.16-4.21.76-1.61 8.14 3.78-.76 1.62-8.14-3.79m2.26-3.99 1.15-1.38 6.9 5.76-1.15 1.37-6.9-5.75m4.45-4.25L20 9.08l-1.44 1.07-5.36-7.21 1.44-1.07M6.59 18.41v-1.8h8.98v1.8H6.59Z"/></svg>
<span class="md-ellipsis">
第 5 章 &nbsp; 栈与队列
</span>
</a>
<label class="md-nav__link " for="__nav_6">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
第 5 章 &nbsp; 栈与队列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
<span class="md-ellipsis">
5.1 &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
<span class="md-ellipsis">
5.2 &nbsp; 队列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
<span class="md-ellipsis">
5.3 &nbsp; 双向队列
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
<span class="md-ellipsis">
5.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_hashing/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.3 17.89c1.32-2.1.7-4.89-1.41-6.21a4.52 4.52 0 0 0-6.21 1.41C10.36 15.2 11 18 13.09 19.3c1.47.92 3.33.92 4.8 0L21 22.39 22.39 21l-3.09-3.11m-2-.62c-.98.98-2.56.97-3.54 0-.97-.98-.97-2.56.01-3.54.97-.97 2.55-.97 3.53 0 .96.99.95 2.57-.03 3.54h.03M19 4H5a2 2 0 0 0-2 2v12a2 2 0 0 0 2 2h5.81a6.3 6.3 0 0 1-1.31-2H5v-4h4.18c.16-.71.43-1.39.82-2H5V8h6v2.81a6.3 6.3 0 0 1 2-1.31V8h6v2a6.499 6.499 0 0 1 2 2V6a2 2 0 0 0-2-2Z"/></svg>
<span class="md-ellipsis">
第 6 章 &nbsp; 哈希表
</span>
</a>
<label class="md-nav__link " for="__nav_7">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
第 6 章 &nbsp; 哈希表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
<span class="md-ellipsis">
6.1 &nbsp; 哈希表
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
<span class="md-ellipsis">
6.2 &nbsp; 哈希冲突
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
6.3 &nbsp; 哈希算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
<span class="md-ellipsis">
6.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_tree/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19.5 17c-.14 0-.26 0-.39.04L17.5 13.8c.45-.45.75-1.09.75-1.8a2.5 2.5 0 0 0-2.5-2.5c-.14 0-.25 0-.4.04L13.74 6.3c.47-.46.76-1.09.76-1.8a2.5 2.5 0 0 0-5 0c0 .7.29 1.34.76 1.79L8.65 9.54c-.15-.04-.26-.04-.4-.04a2.5 2.5 0 0 0-2.5 2.5c0 .71.29 1.34.75 1.79l-1.61 3.25C4.76 17 4.64 17 4.5 17a2.5 2.5 0 0 0 0 5A2.5 2.5 0 0 0 7 19.5c0-.7-.29-1.34-.76-1.79l1.62-3.25c.14.04.26.04.39.04s.25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0A2.5 2.5 0 0 0 12 17c-.13 0-.26 0-.39.04L10 13.8c.45-.45.75-1.09.75-1.8 0-.7-.29-1.33-.75-1.79l1.61-3.25c.13.04.26.04.39.04s.26 0 .39-.04L14 10.21a2.5 2.5 0 0 0 1.75 4.29c.13 0 .25 0 .38-.04l1.63 3.25c-.47.45-.76 1.09-.76 1.79a2.5 2.5 0 0 0 5 0 2.5 2.5 0 0 0-2.5-2.5m-15 3.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1m8.5-1c0 .55-.45 1-1 1s-1-.45-1-1 .45-1 1-1 1 .45 1 1M7.25 12c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1M11 4.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m3.75 7.5c0-.55.45-1 1-1s1 .45 1 1-.45 1-1 1-1-.45-1-1m4.75 8.5c-.55 0-1-.45-1-1s.45-1 1-1 1 .45 1 1-.45 1-1 1Z"/></svg>
<span class="md-ellipsis">
第 7 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_8">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
第 7 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.1 &nbsp; 二叉树
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
<span class="md-ellipsis">
7.2 &nbsp; 二叉树遍历
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.3 &nbsp; 二叉树数组表示
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.4 &nbsp; 二叉搜索树
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
<span class="md-ellipsis">
7.5 &nbsp; AVL 树 *
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
<span class="md-ellipsis">
7.6 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_heap/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 1a2.5 2.5 0 0 0-2.5 2.5A2.5 2.5 0 0 0 11 5.79V7H7a2 2 0 0 0-2 2v.71A2.5 2.5 0 0 0 3.5 12 2.5 2.5 0 0 0 5 14.29V15H4a2 2 0 0 0-2 2v1.21A2.5 2.5 0 0 0 .5 20.5 2.5 2.5 0 0 0 3 23a2.5 2.5 0 0 0 2.5-2.5A2.5 2.5 0 0 0 4 18.21V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 9 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2H7v-.71A2.5 2.5 0 0 0 8.5 12 2.5 2.5 0 0 0 7 9.71V9h10v.71A2.5 2.5 0 0 0 15.5 12a2.5 2.5 0 0 0 1.5 2.29V15h-1a2 2 0 0 0-2 2v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 15 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17h4v1.21a2.5 2.5 0 0 0-1.5 2.29A2.5 2.5 0 0 0 21 23a2.5 2.5 0 0 0 2.5-2.5 2.5 2.5 0 0 0-1.5-2.29V17a2 2 0 0 0-2-2h-1v-.71A2.5 2.5 0 0 0 20.5 12 2.5 2.5 0 0 0 19 9.71V9a2 2 0 0 0-2-2h-4V5.79a2.5 2.5 0 0 0 1.5-2.29A2.5 2.5 0 0 0 12 1m0 1.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M6 11a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m12 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1M3 19.5a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m6 0a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1Z"/></svg>
<span class="md-ellipsis">
第 8 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_9">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
第 8 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
<span class="md-ellipsis">
8.1 &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
<span class="md-ellipsis">
8.2 &nbsp; 建堆操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/top_k/" class="md-nav__link">
<span class="md-ellipsis">
8.3 &nbsp; Top-K 问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
<span class="md-ellipsis">
8.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_graph/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m12 5.37-.44-.06L6 14.9c.24.21.4.48.47.78h11.06c.07-.3.23-.57.47-.78l-5.56-9.59-.44.06M6.6 16.53l4.28 2.53c.29-.27.69-.43 1.12-.43.43 0 .83.16 1.12.43l4.28-2.53H6.6M12 22a1.68 1.68 0 0 1-1.68-1.68l.09-.56-4.3-2.55c-.31.36-.76.58-1.27.58a1.68 1.68 0 0 1-1.68-1.68c0-.79.53-1.45 1.26-1.64V9.36c-.83-.11-1.47-.82-1.47-1.68A1.68 1.68 0 0 1 4.63 6c.55 0 1.03.26 1.34.66l4.41-2.53-.06-.45c0-.93.75-1.68 1.68-1.68.93 0 1.68.75 1.68 1.68l-.06.45 4.41 2.53c.31-.4.79-.66 1.34-.66a1.68 1.68 0 0 1 1.68 1.68c0 .86-.64 1.57-1.47 1.68v5.11c.73.19 1.26.85 1.26 1.64a1.68 1.68 0 0 1-1.68 1.68c-.51 0-.96-.22-1.27-.58l-4.3 2.55.09.56A1.68 1.68 0 0 1 12 22M10.8 4.86 6.3 7.44l.02.24c0 .71-.44 1.32-1.06 1.57l.03 5.25 5.51-9.64m2.4 0 5.51 9.64.03-5.25c-.62-.25-1.06-.86-1.06-1.57l.02-.24-4.5-2.58Z"/></svg>
<span class="md-ellipsis">
第 9 章 &nbsp;
</span>
</a>
<label class="md-nav__link " for="__nav_10">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
第 9 章 &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
<span class="md-ellipsis">
9.1 &nbsp;
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
<span class="md-ellipsis">
9.2 &nbsp; 图基础操作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
<span class="md-ellipsis">
9.3 &nbsp; 图的遍历
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
<span class="md-ellipsis">
9.4 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_searching/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m19.31 18.9 3.08 3.1L21 23.39l-3.12-3.07c-.69.43-1.51.68-2.38.68-2.5 0-4.5-2-4.5-4.5s2-4.5 4.5-4.5 4.5 2 4.5 4.5c0 .88-.25 1.71-.69 2.4m-3.81.1a2.5 2.5 0 0 0 0-5 2.5 2.5 0 0 0 0 5M21 4v2H3V4h18M3 16v-2h6v2H3m0-5V9h18v2h-2.03c-1.01-.63-2.2-1-3.47-1s-2.46.37-3.47 1H3Z"/></svg>
<span class="md-ellipsis">
第 10 章 &nbsp; 搜索
</span>
</a>
<label class="md-nav__link " for="__nav_11">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
第 10 章 &nbsp; 搜索
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
<span class="md-ellipsis">
10.1 &nbsp; 二分查找
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
<span class="md-ellipsis">
10.2 &nbsp; 二分查找插入点
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.3 &nbsp; 二分查找边界
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
<span class="md-ellipsis">
10.4 &nbsp; 哈希优化策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
<span class="md-ellipsis">
10.5 &nbsp; 重识搜索算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<span class="md-ellipsis">
10.6 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_sorting/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 17h3l-4 4-4-4h3V3h2M2 17h10v2H2M6 5v2H2V5m0 6h7v2H2v-2Z"/></svg>
<span class="md-ellipsis">
第 11 章 &nbsp; 排序
</span>
</a>
<label class="md-nav__link " for="__nav_12">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_12">
<span class="md-nav__icon md-icon"></span>
第 11 章 &nbsp; 排序
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
11.1 &nbsp; 排序算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.2 &nbsp; 选择排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.3 &nbsp; 冒泡排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.4 &nbsp; 插入排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.5 &nbsp; 快速排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.6 &nbsp; 归并排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.7 &nbsp; 堆排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.8 &nbsp; 桶排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.9 &nbsp; 计数排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
<span class="md-ellipsis">
11.10 &nbsp; 基数排序
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
<span class="md-ellipsis">
11.11 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_divide_and_conquer/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M17 7v2h5V7h-5M2 9v6h5V9H2m10 0v2H9v2h3v2l3-3-3-3m5 2v2h5v-2h-5m0 4v2h5v-2h-5Z"/></svg>
<span class="md-ellipsis">
第 12 章 &nbsp; 分治
</span>
</a>
<label class="md-nav__link " for="__nav_13">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
第 12 章 &nbsp; 分治
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/divide_and_conquer/" class="md-nav__link">
<span class="md-ellipsis">
12.1 &nbsp; 分治算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/binary_search_recur/" class="md-nav__link">
<span class="md-ellipsis">
12.2 &nbsp; 分治搜索策略
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/build_binary_tree_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.3 &nbsp; 构建树问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/hanota_problem/" class="md-nav__link">
<span class="md-ellipsis">
12.4 &nbsp; 汉诺塔问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_divide_and_conquer/summary/" class="md-nav__link">
<span class="md-ellipsis">
12.5 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_backtracking/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 15a3 3 0 0 1 3 3 3 3 0 0 1-3 3 2.99 2.99 0 0 1-2.83-2H14v-2h1.17c.41-1.17 1.52-2 2.83-2m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m0-9a1.43 1.43 0 0 0 1.43-1.43 1.43 1.43 0 1 0-2.86 0A1.43 1.43 0 0 0 18 8m0-5.43a4 4 0 0 1 4 4C22 9.56 18 14 18 14s-4-4.44-4-7.43a4 4 0 0 1 4-4M8.83 17H10v2H8.83A2.99 2.99 0 0 1 6 21a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V14h2v1.17c.85.3 1.53.98 1.83 1.83M6 17a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1M6 3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83V10H5V8.83A2.99 2.99 0 0 1 3 6a3 3 0 0 1 3-3m0 2a1 1 0 0 0-1 1 1 1 0 0 0 1 1 1 1 0 0 0 1-1 1 1 0 0 0-1-1m5 14v-2h2v2h-2m-4-6H5v-2h2v2Z"/></svg>
<span class="md-ellipsis">
第 13 章 &nbsp; 回溯
</span>
</a>
<label class="md-nav__link " for="__nav_14">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
第 13 章 &nbsp; 回溯
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
13.1 &nbsp; 回溯算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.2 &nbsp; 全排列问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.3 &nbsp; 子集和问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
<span class="md-ellipsis">
13.4 &nbsp; N 皇后问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
<span class="md-ellipsis">
13.5 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_dynamic_programming/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M22 15h-2v3c0 1.11-.89 2-2 2h-3v2l-3-3 3-3v2h3v-3h-2l3-3 3 3m0-11v4c0 1.1-.9 2-2 2H10v10c0 1.1-.9 2-2 2H4c-1.1 0-2-.9-2-2V4c0-1.1.9-2 2-2h16c1.1 0 2 .9 2 2M4 8h4V4H4v4m0 2v4h4v-4H4m4 10v-4H4v4h4m6-12V4h-4v4h4m6-4h-4v4h4V4Z"/></svg>
<span class="md-ellipsis">
第 14 章 &nbsp; 动态规划
</span>
</a>
<label class="md-nav__link " for="__nav_15">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
第 14 章 &nbsp; 动态规划
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/intro_to_dynamic_programming/" class="md-nav__link">
<span class="md-ellipsis">
14.1 &nbsp; 初探动态规划
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_problem_features/" class="md-nav__link">
<span class="md-ellipsis">
14.2 &nbsp; DP 问题特性
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/dp_solution_pipeline/" class="md-nav__link">
<span class="md-ellipsis">
14.3 &nbsp; DP 解题思路
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.4 &nbsp; 0-1 背包问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/unbounded_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.5 &nbsp; 完全背包问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/edit_distance_problem/" class="md-nav__link">
<span class="md-ellipsis">
14.6 &nbsp; 编辑距离问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_dynamic_programming/summary/" class="md-nav__link">
<span class="md-ellipsis">
14.7 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_greedy/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 3c3.88 0 7 3.14 7 7 0 2.8-1.63 5.19-4 6.31V21H9v-3H8c-1.11 0-2-.89-2-2v-3H4.5c-.42 0-.66-.5-.42-.81L6 9.66A7.003 7.003 0 0 1 13 3m0-2C8.41 1 4.61 4.42 4.06 8.9L2.5 11h-.03l-.02.03c-.55.76-.62 1.76-.19 2.59.36.69 1 1.17 1.74 1.32V16c0 1.85 1.28 3.42 3 3.87V23h11v-5.5c2.5-1.67 4-4.44 4-7.5 0-4.97-4.04-9-9-9m4 7.83c0 1.54-1.36 2.77-3.42 4.64L13 14l-.58-.53C10.36 11.6 9 10.37 9 8.83c0-1.2.96-2.19 2.16-2.2h.04c.69 0 1.35.31 1.8.83.45-.52 1.11-.83 1.8-.83 1.2-.01 2.2.96 2.2 2.16v.04Z"/></svg>
<span class="md-ellipsis">
第 15 章 &nbsp; 贪心
</span>
</a>
<label class="md-nav__link " for="__nav_16">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
第 15 章 &nbsp; 贪心
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_greedy/greedy_algorithm/" class="md-nav__link">
<span class="md-ellipsis">
15.1 &nbsp; 贪心算法
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/fractional_knapsack_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.2 &nbsp; 分数背包问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_capacity_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.3 &nbsp; 最大容量问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/max_product_cutting_problem/" class="md-nav__link">
<span class="md-ellipsis">
15.4 &nbsp; 最大切分乘积问题
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_greedy/summary/" class="md-nav__link">
<span class="md-ellipsis">
15.5 &nbsp; 小结
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_17" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_appendix/" class="md-nav__link ">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M11 18h2v-2h-2v2m1-16A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2m0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8m0-14a4 4 0 0 0-4 4h2a2 2 0 0 1 2-2 2 2 0 0 1 2 2c0 2-3 1.75-3 5h2c0-2.25 3-2.5 3-5a4 4 0 0 0-4-4Z"/></svg>
<span class="md-ellipsis">
第 16 章 &nbsp; 附录
</span>
</a>
<label class="md-nav__link " for="__nav_17">
<span class="md-nav__icon md-icon"></span>
</label>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_17_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_17">
<span class="md-nav__icon md-icon"></span>
第 16 章 &nbsp; 附录
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
<span class="md-ellipsis">
16.1 &nbsp; 编程环境安装
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
<span class="md-ellipsis">
16.2 &nbsp; 一起参与创作
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_appendix/terminology/" class="md-nav__link">
<span class="md-ellipsis">
16.3 &nbsp; 术语表
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_18" >
<div class="md-nav__link md-nav__container">
<a href="../../chapter_reference/" class="md-nav__link ">
<span class="md-ellipsis">
参考文献
</span>
</a>
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_18_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_18">
<span class="md-nav__icon md-icon"></span>
参考文献
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#231" class="md-nav__link">
2.3.1 &nbsp; 统计时间增长趋势
</a>
</li>
<li class="md-nav__item">
<a href="#232" class="md-nav__link">
2.3.2 &nbsp; 函数渐近上界
</a>
</li>
<li class="md-nav__item">
<a href="#233" class="md-nav__link">
2.3.3 &nbsp; 推算方法
</a>
<nav class="md-nav" aria-label="2.3.3   推算方法">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
1. &nbsp; 第一步:统计操作数量
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
2. &nbsp; 第二步:判断渐近上界
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#234" class="md-nav__link">
2.3.4 &nbsp; 常见类型
</a>
<nav class="md-nav" aria-label="2.3.4   常见类型">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1-o1" class="md-nav__link">
1. &nbsp; 常数阶 \(O(1)\)
</a>
</li>
<li class="md-nav__item">
<a href="#2-on" class="md-nav__link">
2. &nbsp; 线性阶 \(O(n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#3-on2" class="md-nav__link">
3. &nbsp; 平方阶 \(O(n^2)\)
</a>
</li>
<li class="md-nav__item">
<a href="#4-o2n" class="md-nav__link">
4. &nbsp; 指数阶 \(O(2^n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#5-olog-n" class="md-nav__link">
5. &nbsp; 对数阶 \(O(\log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#6-on-log-n" class="md-nav__link">
6. &nbsp; 线性对数阶 \(O(n \log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#7-on" class="md-nav__link">
7. &nbsp; 阶乘阶 \(O(n!)\)
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#235" class="md-nav__link">
2.3.5 &nbsp; 最差、最佳、平均时间复杂度
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<!--
Copyright (c) 2016-2023 Martin Donath <martin.donath@squidfunk.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
-->
<!-- Tags -->
<!-- Actions -->
<a href="https://github.com/krahets/hello-algo/tree/main/docs/chapter_computational_complexity/time_complexity.md" title="编辑此页" class="md-content__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M10 20H6V4h7v5h5v3.1l2-2V8l-6-6H6c-1.1 0-2 .9-2 2v16c0 1.1.9 2 2 2h4v-2m10.2-7c.1 0 .3.1.4.2l1.3 1.3c.2.2.2.6 0 .8l-1 1-2.1-2.1 1-1c.1-.1.2-.2.4-.2m0 3.9L14.1 23H12v-2.1l6.1-6.1 2.1 2.1Z"/></svg>
</a>
<!--
Hack: check whether the content contains a h1 headline. If it doesn't, the
page title (or respectively site name) is used as the main headline.
-->
<!-- Page content -->
<h1 id="23">2.3 &nbsp; 时间复杂度<a class="headerlink" href="#23" title="Permanent link">&para;</a></h1>
<p>运行时间可以直观且准确地反映算法的效率。如果我们想要准确预估一段代码的运行时间,应该如何操作呢?</p>
<ol>
<li><strong>确定运行平台</strong>,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。</li>
<li><strong>评估各种计算操作所需的运行时间</strong>,例如加法操作 <code>+</code> 需要 1 ns ,乘法操作 <code>*</code> 需要 10 ns ,打印操作 <code>print()</code> 需要 5 ns 等。</li>
<li><strong>统计代码中所有的计算操作</strong>,并将所有操作的执行时间求和,从而得到运行时间。</li>
</ol>
<p>例如在以下代码中,输入数据大小为 <span class="arithmatex">\(n\)</span> </p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:12"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Python</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Java</label><label for="__tabbed_1_4">C#</label><label for="__tabbed_1_5">Go</label><label for="__tabbed_1_6">Swift</label><label for="__tabbed_1_7">JS</label><label for="__tabbed_1_8">TS</label><label for="__tabbed_1_9">Dart</label><label for="__tabbed_1_10">Rust</label><label for="__tabbed_1_11">C</label><label for="__tabbed_1_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="c1"># 在某运行平台下</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">2</span> <span class="c1"># 1 ns</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># 1 ns</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1"># 10 ns</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a> <span class="c1"># 循环 n 次</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c1"># 1 ns</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># 5 ns</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">Algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">func</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a> <span class="kd">var</span> <span class="nv">a</span> <span class="p">=</span> <span class="mi">2</span> <span class="c1">// 1 ns</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1">// 1 ns</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1">// 10 ns</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a> <span class="c1">// 循环 n 次</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span> <span class="c1">// 1 ns</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1">// 5 ns</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a> <span class="p">}</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-6-2" name="__codelineno-6-2" href="#__codelineno-6-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-6-3" name="__codelineno-6-3" href="#__codelineno-6-3"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-6-4" name="__codelineno-6-4" href="#__codelineno-6-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-6-5" name="__codelineno-6-5" href="#__codelineno-6-5"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-6-6" name="__codelineno-6-6" href="#__codelineno-6-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-6-7" name="__codelineno-6-7" href="#__codelineno-6-7"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-6-8" name="__codelineno-6-8" href="#__codelineno-6-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-6-9" name="__codelineno-6-9" href="#__codelineno-6-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-6-10" name="__codelineno-6-10" href="#__codelineno-6-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a><span class="k">fn</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-9-5" name="__codelineno-9-5" href="#__codelineno-9-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-9-6" name="__codelineno-9-6" href="#__codelineno-9-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-9-7" name="__codelineno-9-7" href="#__codelineno-9-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-9-8" name="__codelineno-9-8" href="#__codelineno-9-8"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">&quot;{}&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-9-9" name="__codelineno-9-9" href="#__codelineno-9-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-9-10" name="__codelineno-9-10" href="#__codelineno-9-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">a</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">0</span><span class="p">..</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">&quot;{}</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>根据以上方法,可以得到算法运行时间为 <span class="arithmatex">\(6n + 12\)</span> ns </p>
<div class="arithmatex">\[
1 + 1 + 10 + (1 + 5) \times n = 6n + 12
\]</div>
<p>但实际上,<strong>统计算法的运行时间既不合理也不现实</strong>。首先,我们不希望将预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。其次,我们很难获知每种操作的运行时间,这给预估过程带来了极大的难度。</p>
<h2 id="231">2.3.1 &nbsp; 统计时间增长趋势<a class="headerlink" href="#231" title="Permanent link">&para;</a></h2>
<p>时间复杂度分析统计的不是算法运行时间,<strong>而是算法运行时间随着数据量变大时的增长趋势</strong></p>
<p>“时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 <span class="arithmatex">\(n\)</span> ,给定三个算法函数 <code>A</code><code>B</code><code>C</code> </p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:12"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Python</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Java</label><label for="__tabbed_2_4">C#</label><label for="__tabbed_2_5">Go</label><label for="__tabbed_2_6">Swift</label><label for="__tabbed_2_7">JS</label><label for="__tabbed_2_8">TS</label><label for="__tabbed_2_9">Dart</label><label for="__tabbed_2_10">Rust</label><label for="__tabbed_2_11">C</label><label for="__tabbed_2_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="c1"># 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="k">def</span> <span class="nf">algorithm_A</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="c1"># 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="k">def</span> <span class="nf">algorithm_B</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="c1"># 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="k">def</span> <span class="nf">algorithm_C</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1000000</span><span class="p">):</span>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a><span class="p">}</span>
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a><span class="p">}</span>
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-13-14" name="__codelineno-13-14" href="#__codelineno-13-14"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-13-15" name="__codelineno-13-15" href="#__codelineno-13-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-13-16" name="__codelineno-13-16" href="#__codelineno-13-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-14-2" name="__codelineno-14-2" href="#__codelineno-14-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-3" name="__codelineno-14-3" href="#__codelineno-14-3"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a><span class="p">}</span>
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a><span class="p">}</span>
<a id="__codelineno-14-11" name="__codelineno-14-11" href="#__codelineno-14-11"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-14-12" name="__codelineno-14-12" href="#__codelineno-14-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-13" name="__codelineno-14-13" href="#__codelineno-14-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-14-14" name="__codelineno-14-14" href="#__codelineno-14-14"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-14-15" name="__codelineno-14-15" href="#__codelineno-14-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-14-16" name="__codelineno-14-16" href="#__codelineno-14-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-15-2" name="__codelineno-15-2" href="#__codelineno-15-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">AlgorithmA</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-3" name="__codelineno-15-3" href="#__codelineno-15-3"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-15-4" name="__codelineno-15-4" href="#__codelineno-15-4"></a><span class="p">}</span>
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="k">void</span><span class="w"> </span><span class="nf">AlgorithmB</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="p">}</span>
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-15-12" name="__codelineno-15-12" href="#__codelineno-15-12"></a><span class="k">void</span><span class="w"> </span><span class="nf">AlgorithmC</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-13" name="__codelineno-15-13" href="#__codelineno-15-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-15-14" name="__codelineno-15-14" href="#__codelineno-15-14"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-15-15" name="__codelineno-15-15" href="#__codelineno-15-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-15-16" name="__codelineno-15-16" href="#__codelineno-15-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm_A</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="p">}</span>
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm_B</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="p">}</span>
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm_C</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">func</span> <span class="nf">algorithmA</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="p">}</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="kd">func</span> <span class="nf">algorithmB</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a> <span class="p">}</span>
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="p">}</span>
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a>
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="kd">func</span> <span class="nf">algorithmC</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="mi">1000000</span> <span class="p">{</span>
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a> <span class="p">}</span>
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_A</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a><span class="p">}</span>
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_B</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a><span class="p">}</span>
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-18-12" name="__codelineno-18-12" href="#__codelineno-18-12"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_C</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-13" name="__codelineno-18-13" href="#__codelineno-18-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">1000000</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-18-14" name="__codelineno-18-14" href="#__codelineno-18-14"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-18-15" name="__codelineno-18-15" href="#__codelineno-18-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-18-16" name="__codelineno-18-16" href="#__codelineno-18-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-19-2" name="__codelineno-19-2" href="#__codelineno-19-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_A</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-3" name="__codelineno-19-3" href="#__codelineno-19-3"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-19-4" name="__codelineno-19-4" href="#__codelineno-19-4"></a><span class="p">}</span>
<a id="__codelineno-19-5" name="__codelineno-19-5" href="#__codelineno-19-5"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-19-6" name="__codelineno-19-6" href="#__codelineno-19-6"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_B</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-7" name="__codelineno-19-7" href="#__codelineno-19-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-8" name="__codelineno-19-8" href="#__codelineno-19-8"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-19-9" name="__codelineno-19-9" href="#__codelineno-19-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-19-10" name="__codelineno-19-10" href="#__codelineno-19-10"></a><span class="p">}</span>
<a id="__codelineno-19-11" name="__codelineno-19-11" href="#__codelineno-19-11"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-19-12" name="__codelineno-19-12" href="#__codelineno-19-12"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm_C</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-13" name="__codelineno-19-13" href="#__codelineno-19-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">1000000</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-19-14" name="__codelineno-19-14" href="#__codelineno-19-14"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-19-15" name="__codelineno-19-15" href="#__codelineno-19-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-19-16" name="__codelineno-19-16" href="#__codelineno-19-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-20-2" name="__codelineno-20-2" href="#__codelineno-20-2"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithmA</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-3" name="__codelineno-20-3" href="#__codelineno-20-3"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-20-4" name="__codelineno-20-4" href="#__codelineno-20-4"></a><span class="p">}</span>
<a id="__codelineno-20-5" name="__codelineno-20-5" href="#__codelineno-20-5"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-20-6" name="__codelineno-20-6" href="#__codelineno-20-6"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithmB</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-7" name="__codelineno-20-7" href="#__codelineno-20-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-8" name="__codelineno-20-8" href="#__codelineno-20-8"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-20-9" name="__codelineno-20-9" href="#__codelineno-20-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-20-10" name="__codelineno-20-10" href="#__codelineno-20-10"></a><span class="p">}</span>
<a id="__codelineno-20-11" name="__codelineno-20-11" href="#__codelineno-20-11"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-20-12" name="__codelineno-20-12" href="#__codelineno-20-12"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithmC</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-13" name="__codelineno-20-13" href="#__codelineno-20-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-20-14" name="__codelineno-20-14" href="#__codelineno-20-14"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-20-15" name="__codelineno-20-15" href="#__codelineno-20-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-20-16" name="__codelineno-20-16" href="#__codelineno-20-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-21-2" name="__codelineno-21-2" href="#__codelineno-21-2"></a><span class="k">fn</span> <span class="nf">algorithm_A</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-3" name="__codelineno-21-3" href="#__codelineno-21-3"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">&quot;{}&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-21-4" name="__codelineno-21-4" href="#__codelineno-21-4"></a><span class="p">}</span>
<a id="__codelineno-21-5" name="__codelineno-21-5" href="#__codelineno-21-5"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-21-6" name="__codelineno-21-6" href="#__codelineno-21-6"></a><span class="k">fn</span> <span class="nf">algorithm_B</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-7" name="__codelineno-21-7" href="#__codelineno-21-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-8" name="__codelineno-21-8" href="#__codelineno-21-8"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">&quot;{}&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-21-9" name="__codelineno-21-9" href="#__codelineno-21-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-21-10" name="__codelineno-21-10" href="#__codelineno-21-10"></a><span class="p">}</span>
<a id="__codelineno-21-11" name="__codelineno-21-11" href="#__codelineno-21-11"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-21-12" name="__codelineno-21-12" href="#__codelineno-21-12"></a><span class="k">fn</span> <span class="nf">algorithm_C</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-13" name="__codelineno-21-13" href="#__codelineno-21-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="mi">1000000</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-21-14" name="__codelineno-21-14" href="#__codelineno-21-14"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">&quot;{}&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-21-15" name="__codelineno-21-15" href="#__codelineno-21-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-21-16" name="__codelineno-21-16" href="#__codelineno-21-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-22-2" name="__codelineno-22-2" href="#__codelineno-22-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-3" name="__codelineno-22-3" href="#__codelineno-22-3"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-22-4" name="__codelineno-22-4" href="#__codelineno-22-4"></a><span class="p">}</span>
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-22-9" name="__codelineno-22-9" href="#__codelineno-22-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-22-10" name="__codelineno-22-10" href="#__codelineno-22-10"></a><span class="p">}</span>
<a id="__codelineno-22-11" name="__codelineno-22-11" href="#__codelineno-22-11"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-22-12" name="__codelineno-22-12" href="#__codelineno-22-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-13" name="__codelineno-22-13" href="#__codelineno-22-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-22-14" name="__codelineno-22-14" href="#__codelineno-22-14"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-22-15" name="__codelineno-22-15" href="#__codelineno-22-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-22-16" name="__codelineno-22-16" href="#__codelineno-22-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="c1">// 算法 A 的时间复杂度:常数阶</span>
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm_A</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">&quot;{}</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span>
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="p">}</span>
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="c1">// 算法 B 的时间复杂度:线性阶</span>
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm_B</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">0</span><span class="p">..</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">&quot;{}</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span>
<a id="__codelineno-23-10" name="__codelineno-23-10" href="#__codelineno-23-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-11" name="__codelineno-23-11" href="#__codelineno-23-11"></a><span class="p">}</span>
<a id="__codelineno-23-12" name="__codelineno-23-12" href="#__codelineno-23-12"></a><span class="c1">// 算法 C 的时间复杂度:常数阶</span>
<a id="__codelineno-23-13" name="__codelineno-23-13" href="#__codelineno-23-13"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm_C</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-23-14" name="__codelineno-23-14" href="#__codelineno-23-14"></a><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-23-15" name="__codelineno-23-15" href="#__codelineno-23-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">0</span><span class="p">..</span><span class="mi">1000000</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span><span class="w"> </span>
<a id="__codelineno-23-16" name="__codelineno-23-16" href="#__codelineno-23-16"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">&quot;{}</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span>
<a id="__codelineno-23-17" name="__codelineno-23-17" href="#__codelineno-23-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-23-18" name="__codelineno-23-18" href="#__codelineno-23-18"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>图 2-7 展示了以上三个算法函数的时间复杂度。</p>
<ul>
<li>算法 <code>A</code> 只有 <span class="arithmatex">\(1\)</span> 个打印操作,算法运行时间不随着 <span class="arithmatex">\(n\)</span> 增大而增长。我们称此算法的时间复杂度为“常数阶”。</li>
<li>算法 <code>B</code> 中的打印操作需要循环 <span class="arithmatex">\(n\)</span> 次,算法运行时间随着 <span class="arithmatex">\(n\)</span> 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。</li>
<li>算法 <code>C</code> 中的打印操作需要循环 <span class="arithmatex">\(1000000\)</span> 次,虽然运行时间很长,但它与输入数据大小 <span class="arithmatex">\(n\)</span> 无关。因此 <code>C</code> 的时间复杂度和 <code>A</code> 相同,仍为“常数阶”。</li>
</ul>
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_simple_example.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="算法 A、B 和 C 的时间增长趋势" class="animation-figure" src="../time_complexity.assets/time_complexity_simple_example.png" /></a></p>
<p align="center"> 图 2-7 &nbsp; 算法 A、B 和 C 的时间增长趋势 </p>
<p>相较于直接统计算法运行时间,时间复杂度分析有哪些特点呢?</p>
<ul>
<li><strong>时间复杂度能够有效评估算法效率</strong>。例如,算法 <code>B</code> 的运行时间呈线性增长,在 <span class="arithmatex">\(n &gt; 1\)</span> 时比算法 <code>A</code> 更慢,在 <span class="arithmatex">\(n &gt; 1000000\)</span> 时比算法 <code>C</code> 更慢。事实上,只要输入数据大小 <span class="arithmatex">\(n\)</span> 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势所表达的含义。</li>
<li><strong>时间复杂度的推算方法更简便</strong>。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作的运行时间的统计”简化为“计算操作的数量的统计”,这样一来估算难度就大大降低了。</li>
<li><strong>时间复杂度也存在一定的局限性</strong>。例如,尽管算法 <code>A</code><code>C</code> 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 <code>B</code> 的时间复杂度比 <code>C</code> 高,但在输入数据大小 <span class="arithmatex">\(n\)</span> 较小时,算法 <code>B</code> 明显优于算法 <code>C</code> 。在这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。</li>
</ul>
<h2 id="232">2.3.2 &nbsp; 函数渐近上界<a class="headerlink" href="#232" title="Permanent link">&para;</a></h2>
<p>给定一个输入大小为 <span class="arithmatex">\(n\)</span> 的函数:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="3:12"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Python</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Java</label><label for="__tabbed_3_4">C#</label><label for="__tabbed_3_5">Go</label><label for="__tabbed_3_6">Swift</label><label for="__tabbed_3_7">JS</label><label for="__tabbed_3_8">TS</label><label for="__tabbed_3_9">Dart</label><label for="__tabbed_3_10">Rust</label><label for="__tabbed_3_11">C</label><label for="__tabbed_3_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># +1</span>
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># +1</span>
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1"># +1</span>
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a> <span class="c1"># 循环 n 次</span>
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c1"># +1</span>
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># +1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-25-3" name="__codelineno-25-3" href="#__codelineno-25-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-25-4" name="__codelineno-25-4" href="#__codelineno-25-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-25-5" name="__codelineno-25-5" href="#__codelineno-25-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-25-6" name="__codelineno-25-6" href="#__codelineno-25-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-25-7" name="__codelineno-25-7" href="#__codelineno-25-7"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-25-8" name="__codelineno-25-8" href="#__codelineno-25-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-25-9" name="__codelineno-25-9" href="#__codelineno-25-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-26-3" name="__codelineno-26-3" href="#__codelineno-26-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-26-4" name="__codelineno-26-4" href="#__codelineno-26-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-26-5" name="__codelineno-26-5" href="#__codelineno-26-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-26-6" name="__codelineno-26-6" href="#__codelineno-26-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-26-7" name="__codelineno-26-7" href="#__codelineno-26-7"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-26-8" name="__codelineno-26-8" href="#__codelineno-26-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-26-9" name="__codelineno-26-9" href="#__codelineno-26-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="k">void</span><span class="w"> </span><span class="nf">Algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-27-3" name="__codelineno-27-3" href="#__codelineno-27-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-27-4" name="__codelineno-27-4" href="#__codelineno-27-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-27-5" name="__codelineno-27-5" href="#__codelineno-27-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-27-6" name="__codelineno-27-6" href="#__codelineno-27-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-27-7" name="__codelineno-27-7" href="#__codelineno-27-7"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-27-8" name="__codelineno-27-8" href="#__codelineno-27-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-9" name="__codelineno-27-9" href="#__codelineno-27-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="kd">func</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a> <span class="kd">var</span> <span class="nv">a</span> <span class="p">=</span> <span class="mi">1</span> <span class="c1">// +1</span>
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1">// +1</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1">// +1</span>
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a> <span class="c1">// 循环 n 次</span>
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span> <span class="c1">// +1</span>
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1">// +1</span>
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a> <span class="p">}</span>
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-30-2" name="__codelineno-30-2" href="#__codelineno-30-2"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-30-3" name="__codelineno-30-3" href="#__codelineno-30-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-30-4" name="__codelineno-30-4" href="#__codelineno-30-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-30-5" name="__codelineno-30-5" href="#__codelineno-30-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-30-6" name="__codelineno-30-6" href="#__codelineno-30-6"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">){</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-30-7" name="__codelineno-30-7" href="#__codelineno-30-7"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-30-8" name="__codelineno-30-8" href="#__codelineno-30-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-30-9" name="__codelineno-30-9" href="#__codelineno-30-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="p">{</span>
<a id="__codelineno-31-2" name="__codelineno-31-2" href="#__codelineno-31-2"></a><span class="w"> </span><span class="kd">var</span><span class="w"> </span><span class="nx">a</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-31-3" name="__codelineno-31-3" href="#__codelineno-31-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-31-4" name="__codelineno-31-4" href="#__codelineno-31-4"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-31-5" name="__codelineno-31-5" href="#__codelineno-31-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-31-6" name="__codelineno-31-6" href="#__codelineno-31-6"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">){</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-31-7" name="__codelineno-31-7" href="#__codelineno-31-7"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-31-8" name="__codelineno-31-8" href="#__codelineno-31-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-31-9" name="__codelineno-31-9" href="#__codelineno-31-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-32-2" name="__codelineno-32-2" href="#__codelineno-32-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-32-4" name="__codelineno-32-4" href="#__codelineno-32-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="m">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-32-5" name="__codelineno-32-5" href="#__codelineno-32-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-32-6" name="__codelineno-32-6" href="#__codelineno-32-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-32-7" name="__codelineno-32-7" href="#__codelineno-32-7"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-32-8" name="__codelineno-32-8" href="#__codelineno-32-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-32-9" name="__codelineno-32-9" href="#__codelineno-32-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="k">fn</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a>
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">&quot;{}&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-33-9" name="__codelineno-33-9" href="#__codelineno-33-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-33-10" name="__codelineno-33-10" href="#__codelineno-33-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-34-9" name="__codelineno-34-9" href="#__codelineno-34-9"></a><span class="p">}</span><span class="w"> </span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">a</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="mi">0</span><span class="p">..</span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">&quot;{}</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-35-9" name="__codelineno-35-9" href="#__codelineno-35-9"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>设算法的操作数量是一个关于输入数据大小 <span class="arithmatex">\(n\)</span> 的函数,记为 <span class="arithmatex">\(T(n)\)</span> ,则以上函数的的操作数量为:</p>
<div class="arithmatex">\[
T(n) = 3 + 2n
\]</div>
<p><span class="arithmatex">\(T(n)\)</span> 是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶。</p>
<p>我们将线性阶的时间复杂度记为 <span class="arithmatex">\(O(n)\)</span> ,这个数学符号称为「大 <span class="arithmatex">\(O\)</span> 记号 big-<span class="arithmatex">\(O\)</span> notation」表示函数 <span class="arithmatex">\(T(n)\)</span> 的「渐近上界 asymptotic upper bound」。</p>
<p>时间复杂度分析本质上是计算“操作数量函数 <span class="arithmatex">\(T(n)\)</span>”的渐近上界,其具有明确的数学定义。</p>
<div class="admonition abstract">
<p class="admonition-title">函数渐近上界</p>
<p>若存在正实数 <span class="arithmatex">\(c\)</span> 和实数 <span class="arithmatex">\(n_0\)</span> ,使得对于所有的 <span class="arithmatex">\(n &gt; n_0\)</span> ,均有 <span class="arithmatex">\(T(n) \leq c \cdot f(n)\)</span> ,则可认为 <span class="arithmatex">\(f(n)\)</span> 给出了 <span class="arithmatex">\(T(n)\)</span> 的一个渐近上界,记为 <span class="arithmatex">\(T(n) = O(f(n))\)</span></p>
</div>
<p>如图 2-8 所示,计算渐近上界就是寻找一个函数 <span class="arithmatex">\(f(n)\)</span> ,使得当 <span class="arithmatex">\(n\)</span> 趋向于无穷大时,<span class="arithmatex">\(T(n)\)</span><span class="arithmatex">\(f(n)\)</span> 处于相同的增长级别,仅相差一个常数项 <span class="arithmatex">\(c\)</span> 的倍数。</p>
<p><a class="glightbox" href="../time_complexity.assets/asymptotic_upper_bound.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="函数的渐近上界" class="animation-figure" src="../time_complexity.assets/asymptotic_upper_bound.png" /></a></p>
<p align="center"> 图 2-8 &nbsp; 函数的渐近上界 </p>
<h2 id="233">2.3.3 &nbsp; 推算方法<a class="headerlink" href="#233" title="Permanent link">&para;</a></h2>
<p>渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无须担心。因为在实际使用中,我们只需要掌握推算方法,数学意义就可以逐渐领悟。</p>
<p>根据定义,确定 <span class="arithmatex">\(f(n)\)</span> 之后,我们便可得到时间复杂度 <span class="arithmatex">\(O(f(n))\)</span> 。那么如何确定渐近上界 <span class="arithmatex">\(f(n)\)</span> 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。</p>
<h3 id="1">1. &nbsp; 第一步:统计操作数量<a class="headerlink" href="#1" title="Permanent link">&para;</a></h3>
<p>针对代码,逐行从上到下计算即可。然而,由于上述 <span class="arithmatex">\(c \cdot f(n)\)</span> 中的常数项 <span class="arithmatex">\(c\)</span> 可以取任意大小,<strong>因此操作数量 <span class="arithmatex">\(T(n)\)</span> 中的各种系数、常数项都可以被忽略</strong>。根据此原则,可以总结出以下计数简化技巧。</p>
<ol>
<li><strong>忽略 <span class="arithmatex">\(T(n)\)</span> 中的常数项</strong>。因为它们都与 <span class="arithmatex">\(n\)</span> 无关,所以对时间复杂度不产生影响。</li>
<li><strong>省略所有系数</strong>。例如,循环 <span class="arithmatex">\(2n\)</span> 次、<span class="arithmatex">\(5n + 1\)</span> 次等,都可以简化记为 <span class="arithmatex">\(n\)</span> 次,因为 <span class="arithmatex">\(n\)</span> 前面的系数对时间复杂度没有影响。</li>
<li><strong>循环嵌套时使用乘法</strong>。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第 <code>1.</code> 点和第 <code>2.</code> 点的技巧。</li>
</ol>
<p>给定一个函数,我们可以用上述技巧来统计操作数量。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="4:12"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><input id="__tabbed_4_11" name="__tabbed_4" type="radio" /><input id="__tabbed_4_12" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">Python</label><label for="__tabbed_4_2">C++</label><label for="__tabbed_4_3">Java</label><label for="__tabbed_4_4">C#</label><label for="__tabbed_4_5">Go</label><label for="__tabbed_4_6">Swift</label><label for="__tabbed_4_7">JS</label><label for="__tabbed_4_8">TS</label><label for="__tabbed_4_9">Dart</label><label for="__tabbed_4_10">Rust</label><label for="__tabbed_4_11">C</label><label for="__tabbed_4_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<a id="__codelineno-36-2" name="__codelineno-36-2" href="#__codelineno-36-2"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># +0技巧 1</span>
<a id="__codelineno-36-3" name="__codelineno-36-3" href="#__codelineno-36-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">n</span> <span class="c1"># +0技巧 1</span>
<a id="__codelineno-36-4" name="__codelineno-36-4" href="#__codelineno-36-4"></a> <span class="c1"># +n技巧 2</span>
<a id="__codelineno-36-5" name="__codelineno-36-5" href="#__codelineno-36-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-36-6" name="__codelineno-36-6" href="#__codelineno-36-6"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-36-7" name="__codelineno-36-7" href="#__codelineno-36-7"></a> <span class="c1"># +n*n技巧 3</span>
<a id="__codelineno-36-8" name="__codelineno-36-8" href="#__codelineno-36-8"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span><span class="p">):</span>
<a id="__codelineno-36-9" name="__codelineno-36-9" href="#__codelineno-36-9"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-36-10" name="__codelineno-36-10" href="#__codelineno-36-10"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-2" name="__codelineno-37-2" href="#__codelineno-37-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-37-3" name="__codelineno-37-3" href="#__codelineno-37-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-37-4" name="__codelineno-37-4" href="#__codelineno-37-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-37-5" name="__codelineno-37-5" href="#__codelineno-37-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-6" name="__codelineno-37-6" href="#__codelineno-37-6"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-37-7" name="__codelineno-37-7" href="#__codelineno-37-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-8" name="__codelineno-37-8" href="#__codelineno-37-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-37-9" name="__codelineno-37-9" href="#__codelineno-37-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-10" name="__codelineno-37-10" href="#__codelineno-37-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-37-11" name="__codelineno-37-11" href="#__codelineno-37-11"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span>
<a id="__codelineno-37-12" name="__codelineno-37-12" href="#__codelineno-37-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-13" name="__codelineno-37-13" href="#__codelineno-37-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-37-14" name="__codelineno-37-14" href="#__codelineno-37-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-2" name="__codelineno-38-2" href="#__codelineno-38-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-38-3" name="__codelineno-38-3" href="#__codelineno-38-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-38-4" name="__codelineno-38-4" href="#__codelineno-38-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-38-5" name="__codelineno-38-5" href="#__codelineno-38-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-6" name="__codelineno-38-6" href="#__codelineno-38-6"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-38-7" name="__codelineno-38-7" href="#__codelineno-38-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-8" name="__codelineno-38-8" href="#__codelineno-38-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-38-9" name="__codelineno-38-9" href="#__codelineno-38-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-10" name="__codelineno-38-10" href="#__codelineno-38-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-11" name="__codelineno-38-11" href="#__codelineno-38-11"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-38-12" name="__codelineno-38-12" href="#__codelineno-38-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-13" name="__codelineno-38-13" href="#__codelineno-38-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-14" name="__codelineno-38-14" href="#__codelineno-38-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="k">void</span><span class="w"> </span><span class="nf">Algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-2" name="__codelineno-39-2" href="#__codelineno-39-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-39-3" name="__codelineno-39-3" href="#__codelineno-39-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-39-4" name="__codelineno-39-4" href="#__codelineno-39-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-39-5" name="__codelineno-39-5" href="#__codelineno-39-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-6" name="__codelineno-39-6" href="#__codelineno-39-6"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-39-7" name="__codelineno-39-7" href="#__codelineno-39-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-39-8" name="__codelineno-39-8" href="#__codelineno-39-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-39-9" name="__codelineno-39-9" href="#__codelineno-39-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-10" name="__codelineno-39-10" href="#__codelineno-39-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-39-11" name="__codelineno-39-11" href="#__codelineno-39-11"></a><span class="w"> </span><span class="n">Console</span><span class="p">.</span><span class="n">WriteLine</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-39-12" name="__codelineno-39-12" href="#__codelineno-39-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-39-13" name="__codelineno-39-13" href="#__codelineno-39-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-39-14" name="__codelineno-39-14" href="#__codelineno-39-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="kd">func</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a><span class="w"> </span><span class="nx">fmt</span><span class="p">.</span><span class="nx">Println</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="kd">func</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a> <span class="kd">var</span> <span class="nv">a</span> <span class="p">=</span> <span class="mi">1</span> <span class="c1">// +0技巧 1</span>
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a> <span class="n">a</span> <span class="p">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">n</span> <span class="c1">// +0技巧 1</span>
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a> <span class="c1">// +n技巧 2</span>
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-41-7" name="__codelineno-41-7" href="#__codelineno-41-7"></a> <span class="p">}</span>
<a id="__codelineno-41-8" name="__codelineno-41-8" href="#__codelineno-41-8"></a> <span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-41-9" name="__codelineno-41-9" href="#__codelineno-41-9"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-41-10" name="__codelineno-41-10" href="#__codelineno-41-10"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-41-11" name="__codelineno-41-11" href="#__codelineno-41-11"></a> <span class="bp">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-41-12" name="__codelineno-41-12" href="#__codelineno-41-12"></a> <span class="p">}</span>
<a id="__codelineno-41-13" name="__codelineno-41-13" href="#__codelineno-41-13"></a> <span class="p">}</span>
<a id="__codelineno-41-14" name="__codelineno-41-14" href="#__codelineno-41-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-2" name="__codelineno-42-2" href="#__codelineno-42-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-42-3" name="__codelineno-42-3" href="#__codelineno-42-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-42-4" name="__codelineno-42-4" href="#__codelineno-42-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-42-5" name="__codelineno-42-5" href="#__codelineno-42-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-6" name="__codelineno-42-6" href="#__codelineno-42-6"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-42-7" name="__codelineno-42-7" href="#__codelineno-42-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-42-8" name="__codelineno-42-8" href="#__codelineno-42-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-42-9" name="__codelineno-42-9" href="#__codelineno-42-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-10" name="__codelineno-42-10" href="#__codelineno-42-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-42-11" name="__codelineno-42-11" href="#__codelineno-42-11"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-42-12" name="__codelineno-42-12" href="#__codelineno-42-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-42-13" name="__codelineno-42-13" href="#__codelineno-42-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-42-14" name="__codelineno-42-14" href="#__codelineno-42-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a><span class="kd">function</span><span class="w"> </span><span class="nx">algorithm</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-2" name="__codelineno-43-2" href="#__codelineno-43-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-43-3" name="__codelineno-43-3" href="#__codelineno-43-3"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-43-4" name="__codelineno-43-4" href="#__codelineno-43-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-43-5" name="__codelineno-43-5" href="#__codelineno-43-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-6" name="__codelineno-43-6" href="#__codelineno-43-6"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-43-7" name="__codelineno-43-7" href="#__codelineno-43-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-43-8" name="__codelineno-43-8" href="#__codelineno-43-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-43-9" name="__codelineno-43-9" href="#__codelineno-43-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-10" name="__codelineno-43-10" href="#__codelineno-43-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-43-11" name="__codelineno-43-11" href="#__codelineno-43-11"></a><span class="w"> </span><span class="nx">console</span><span class="p">.</span><span class="nx">log</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
<a id="__codelineno-43-12" name="__codelineno-43-12" href="#__codelineno-43-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-43-13" name="__codelineno-43-13" href="#__codelineno-43-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-43-14" name="__codelineno-43-14" href="#__codelineno-43-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-44-1" name="__codelineno-44-1" href="#__codelineno-44-1"></a><span class="kt">void</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-2" name="__codelineno-44-2" href="#__codelineno-44-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-44-3" name="__codelineno-44-3" href="#__codelineno-44-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-44-4" name="__codelineno-44-4" href="#__codelineno-44-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-44-5" name="__codelineno-44-5" href="#__codelineno-44-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-6" name="__codelineno-44-6" href="#__codelineno-44-6"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-44-7" name="__codelineno-44-7" href="#__codelineno-44-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-44-8" name="__codelineno-44-8" href="#__codelineno-44-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-44-9" name="__codelineno-44-9" href="#__codelineno-44-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-10" name="__codelineno-44-10" href="#__codelineno-44-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-44-11" name="__codelineno-44-11" href="#__codelineno-44-11"></a><span class="w"> </span><span class="n">print</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-44-12" name="__codelineno-44-12" href="#__codelineno-44-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-44-13" name="__codelineno-44-13" href="#__codelineno-44-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-44-14" name="__codelineno-44-14" href="#__codelineno-44-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-45-1" name="__codelineno-45-1" href="#__codelineno-45-1"></a><span class="k">fn</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-2" name="__codelineno-45-2" href="#__codelineno-45-2"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-45-3" name="__codelineno-45-3" href="#__codelineno-45-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-45-4" name="__codelineno-45-4" href="#__codelineno-45-4"></a>
<a id="__codelineno-45-5" name="__codelineno-45-5" href="#__codelineno-45-5"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-45-6" name="__codelineno-45-6" href="#__codelineno-45-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="p">(</span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-7" name="__codelineno-45-7" href="#__codelineno-45-7"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">&quot;{}&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-45-8" name="__codelineno-45-8" href="#__codelineno-45-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-45-9" name="__codelineno-45-9" href="#__codelineno-45-9"></a>
<a id="__codelineno-45-10" name="__codelineno-45-10" href="#__codelineno-45-10"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-45-11" name="__codelineno-45-11" href="#__codelineno-45-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="p">(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-12" name="__codelineno-45-12" href="#__codelineno-45-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-45-13" name="__codelineno-45-13" href="#__codelineno-45-13"></a><span class="w"> </span><span class="fm">println!</span><span class="p">(</span><span class="s">&quot;{}&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-45-14" name="__codelineno-45-14" href="#__codelineno-45-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-45-15" name="__codelineno-45-15" href="#__codelineno-45-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-45-16" name="__codelineno-45-16" href="#__codelineno-45-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-46-1" name="__codelineno-46-1" href="#__codelineno-46-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-2" name="__codelineno-46-2" href="#__codelineno-46-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-46-3" name="__codelineno-46-3" href="#__codelineno-46-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-46-4" name="__codelineno-46-4" href="#__codelineno-46-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-46-5" name="__codelineno-46-5" href="#__codelineno-46-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-6" name="__codelineno-46-6" href="#__codelineno-46-6"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-46-7" name="__codelineno-46-7" href="#__codelineno-46-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-46-8" name="__codelineno-46-8" href="#__codelineno-46-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-46-9" name="__codelineno-46-9" href="#__codelineno-46-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-10" name="__codelineno-46-10" href="#__codelineno-46-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-11" name="__codelineno-46-11" href="#__codelineno-46-11"></a><span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">&quot;%d&quot;</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">);</span>
<a id="__codelineno-46-12" name="__codelineno-46-12" href="#__codelineno-46-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-46-13" name="__codelineno-46-13" href="#__codelineno-46-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-46-14" name="__codelineno-46-14" href="#__codelineno-46-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-47-1" name="__codelineno-47-1" href="#__codelineno-47-1"></a><span class="k">fn</span><span class="w"> </span><span class="n">algorithm</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-47-2" name="__codelineno-47-2" href="#__codelineno-47-2"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">a</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-47-3" name="__codelineno-47-3" href="#__codelineno-47-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nb">@as</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="n">n</span><span class="p">));</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-47-4" name="__codelineno-47-4" href="#__codelineno-47-4"></a>
<a id="__codelineno-47-5" name="__codelineno-47-5" href="#__codelineno-47-5"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-47-6" name="__codelineno-47-6" href="#__codelineno-47-6"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="mi">0</span><span class="p">..(</span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">))</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-47-7" name="__codelineno-47-7" href="#__codelineno-47-7"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">&quot;{}</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span><span class="w"> </span>
<a id="__codelineno-47-8" name="__codelineno-47-8" href="#__codelineno-47-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-47-9" name="__codelineno-47-9" href="#__codelineno-47-9"></a>
<a id="__codelineno-47-10" name="__codelineno-47-10" href="#__codelineno-47-10"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-47-11" name="__codelineno-47-11" href="#__codelineno-47-11"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="mi">0</span><span class="p">..(</span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">))</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-47-12" name="__codelineno-47-12" href="#__codelineno-47-12"></a><span class="w"> </span><span class="k">for</span><span class="p">(</span><span class="mi">0</span><span class="p">..(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">))</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-47-13" name="__codelineno-47-13" href="#__codelineno-47-13"></a><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">debug</span><span class="p">.</span><span class="n">print</span><span class="p">(</span><span class="s">&quot;{}</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">.{</span><span class="mi">0</span><span class="p">});</span><span class="w"> </span>
<a id="__codelineno-47-14" name="__codelineno-47-14" href="#__codelineno-47-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-47-15" name="__codelineno-47-15" href="#__codelineno-47-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-47-16" name="__codelineno-47-16" href="#__codelineno-47-16"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>以下公式展示了使用上述技巧前后的统计结果,两者推出的时间复杂度都为 <span class="arithmatex">\(O(n^2)\)</span></p>
<div class="arithmatex">\[
\begin{aligned}
T(n) &amp; = 2n(n + 1) + (5n + 1) + 2 &amp; \text{完整统计 (-.-|||)} \newline
&amp; = 2n^2 + 7n + 3 \newline
T(n) &amp; = n^2 + n &amp; \text{偷懒统计 (o.O)}
\end{aligned}
\]</div>
<h3 id="2">2. &nbsp; 第二步:判断渐近上界<a class="headerlink" href="#2" title="Permanent link">&para;</a></h3>
<p><strong>时间复杂度由多项式 <span class="arithmatex">\(T(n)\)</span> 中最高阶的项来决定</strong>。这是因为在 <span class="arithmatex">\(n\)</span> 趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以被忽略。</p>
<p>表 2-2 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 <span class="arithmatex">\(n\)</span> 趋于无穷大时,这些常数变得无足轻重。</p>
<p align="center"> 表 2-2 &nbsp; 不同操作数量对应的时间复杂度 </p>
<div class="center-table">
<table>
<thead>
<tr>
<th>操作数量 <span class="arithmatex">\(T(n)\)</span></th>
<th>时间复杂度 <span class="arithmatex">\(O(f(n))\)</span></th>
</tr>
</thead>
<tbody>
<tr>
<td><span class="arithmatex">\(100000\)</span></td>
<td><span class="arithmatex">\(O(1)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(3n + 2\)</span></td>
<td><span class="arithmatex">\(O(n)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(2n^2 + 3n + 2\)</span></td>
<td><span class="arithmatex">\(O(n^2)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(n^3 + 10000n^2\)</span></td>
<td><span class="arithmatex">\(O(n^3)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(2^n + 10000n^{10000}\)</span></td>
<td><span class="arithmatex">\(O(2^n)\)</span></td>
</tr>
</tbody>
</table>
</div>
<h2 id="234">2.3.4 &nbsp; 常见类型<a class="headerlink" href="#234" title="Permanent link">&para;</a></h2>
<p>设输入数据大小为 <span class="arithmatex">\(n\)</span> ,常见的时间复杂度类型如图 2-9 所示(按照从低到高的顺序排列)。</p>
<div class="arithmatex">\[
\begin{aligned}
O(1) &lt; O(\log n) &lt; O(n) &lt; O(n \log n) &lt; O(n^2) &lt; O(2^n) &lt; O(n!) \newline
\text{常数阶} &lt; \text{对数阶} &lt; \text{线性阶} &lt; \text{线性对数阶} &lt; \text{平方阶} &lt; \text{指数阶} &lt; \text{阶乘阶}
\end{aligned}
\]</div>
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_common_types.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="常见的时间复杂度类型" class="animation-figure" src="../time_complexity.assets/time_complexity_common_types.png" /></a></p>
<p align="center"> 图 2-9 &nbsp; 常见的时间复杂度类型 </p>
<h3 id="1-o1">1. &nbsp; 常数阶 <span class="arithmatex">\(O(1)\)</span><a class="headerlink" href="#1-o1" title="Permanent link">&para;</a></h3>
<p>常数阶的操作数量与输入数据大小 <span class="arithmatex">\(n\)</span> 无关,即不随着 <span class="arithmatex">\(n\)</span> 的变化而变化。</p>
<p>在以下函数中,尽管操作数量 <code>size</code> 可能很大,但由于其与输入数据大小 <span class="arithmatex">\(n\)</span> 无关,因此时间复杂度仍为 <span class="arithmatex">\(O(1)\)</span> </p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:12"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><input id="__tabbed_5_12" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Python</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Java</label><label for="__tabbed_5_4">C#</label><label for="__tabbed_5_5">Go</label><label for="__tabbed_5_6">Swift</label><label for="__tabbed_5_7">JS</label><label for="__tabbed_5_8">TS</label><label for="__tabbed_5_9">Dart</label><label for="__tabbed_5_10">Rust</label><label for="__tabbed_5_11">C</label><label for="__tabbed_5_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-48-1" name="__codelineno-48-1" href="#__codelineno-48-1"></a><span class="k">def</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-48-2" name="__codelineno-48-2" href="#__codelineno-48-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;常数阶&quot;&quot;&quot;</span>
<a id="__codelineno-48-3" name="__codelineno-48-3" href="#__codelineno-48-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-48-4" name="__codelineno-48-4" href="#__codelineno-48-4"></a> <span class="n">size</span> <span class="o">=</span> <span class="mi">100000</span>
<a id="__codelineno-48-5" name="__codelineno-48-5" href="#__codelineno-48-5"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="p">):</span>
<a id="__codelineno-48-6" name="__codelineno-48-6" href="#__codelineno-48-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-48-7" name="__codelineno-48-7" href="#__codelineno-48-7"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-49-1" name="__codelineno-49-1" href="#__codelineno-49-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-49-2" name="__codelineno-49-2" href="#__codelineno-49-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-49-3" name="__codelineno-49-3" href="#__codelineno-49-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-49-4" name="__codelineno-49-4" href="#__codelineno-49-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span>
<a id="__codelineno-49-5" name="__codelineno-49-5" href="#__codelineno-49-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-49-6" name="__codelineno-49-6" href="#__codelineno-49-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-49-7" name="__codelineno-49-7" href="#__codelineno-49-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-49-8" name="__codelineno-49-8" href="#__codelineno-49-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-50-1" name="__codelineno-50-1" href="#__codelineno-50-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-50-2" name="__codelineno-50-2" href="#__codelineno-50-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-50-3" name="__codelineno-50-3" href="#__codelineno-50-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-50-4" name="__codelineno-50-4" href="#__codelineno-50-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span>
<a id="__codelineno-50-5" name="__codelineno-50-5" href="#__codelineno-50-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-50-6" name="__codelineno-50-6" href="#__codelineno-50-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-50-7" name="__codelineno-50-7" href="#__codelineno-50-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-50-8" name="__codelineno-50-8" href="#__codelineno-50-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-51-1" name="__codelineno-51-1" href="#__codelineno-51-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-51-2" name="__codelineno-51-2" href="#__codelineno-51-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-51-3" name="__codelineno-51-3" href="#__codelineno-51-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-51-4" name="__codelineno-51-4" href="#__codelineno-51-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">100000</span><span class="p">;</span>
<a id="__codelineno-51-5" name="__codelineno-51-5" href="#__codelineno-51-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-51-6" name="__codelineno-51-6" href="#__codelineno-51-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-51-7" name="__codelineno-51-7" href="#__codelineno-51-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-51-8" name="__codelineno-51-8" href="#__codelineno-51-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-52-1" name="__codelineno-52-1" href="#__codelineno-52-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-52-2" name="__codelineno-52-2" href="#__codelineno-52-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">constant</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-52-3" name="__codelineno-52-3" href="#__codelineno-52-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-52-4" name="__codelineno-52-4" href="#__codelineno-52-4"></a><span class="w"> </span><span class="nx">size</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">100000</span>
<a id="__codelineno-52-5" name="__codelineno-52-5" href="#__codelineno-52-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">size</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-52-6" name="__codelineno-52-6" href="#__codelineno-52-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-52-7" name="__codelineno-52-7" href="#__codelineno-52-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-52-8" name="__codelineno-52-8" href="#__codelineno-52-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-52-9" name="__codelineno-52-9" href="#__codelineno-52-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-53-1" name="__codelineno-53-1" href="#__codelineno-53-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-53-2" name="__codelineno-53-2" href="#__codelineno-53-2"></a><span class="kd">func</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-53-3" name="__codelineno-53-3" href="#__codelineno-53-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-53-4" name="__codelineno-53-4" href="#__codelineno-53-4"></a> <span class="kd">let</span> <span class="nv">size</span> <span class="p">=</span> <span class="mi">100_000</span>
<a id="__codelineno-53-5" name="__codelineno-53-5" href="#__codelineno-53-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">size</span> <span class="p">{</span>
<a id="__codelineno-53-6" name="__codelineno-53-6" href="#__codelineno-53-6"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-53-7" name="__codelineno-53-7" href="#__codelineno-53-7"></a> <span class="p">}</span>
<a id="__codelineno-53-8" name="__codelineno-53-8" href="#__codelineno-53-8"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-53-9" name="__codelineno-53-9" href="#__codelineno-53-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-54-1" name="__codelineno-54-1" href="#__codelineno-54-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-54-2" name="__codelineno-54-2" href="#__codelineno-54-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constant</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-54-3" name="__codelineno-54-3" href="#__codelineno-54-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-54-4" name="__codelineno-54-4" href="#__codelineno-54-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">100000</span><span class="p">;</span>
<a id="__codelineno-54-5" name="__codelineno-54-5" href="#__codelineno-54-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">size</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-54-6" name="__codelineno-54-6" href="#__codelineno-54-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-54-7" name="__codelineno-54-7" href="#__codelineno-54-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-55-1" name="__codelineno-55-1" href="#__codelineno-55-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-55-2" name="__codelineno-55-2" href="#__codelineno-55-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">constant</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-55-3" name="__codelineno-55-3" href="#__codelineno-55-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-55-4" name="__codelineno-55-4" href="#__codelineno-55-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">100000</span><span class="p">;</span>
<a id="__codelineno-55-5" name="__codelineno-55-5" href="#__codelineno-55-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">size</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-55-6" name="__codelineno-55-6" href="#__codelineno-55-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-55-7" name="__codelineno-55-7" href="#__codelineno-55-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-56-1" name="__codelineno-56-1" href="#__codelineno-56-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-56-2" name="__codelineno-56-2" href="#__codelineno-56-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-56-3" name="__codelineno-56-3" href="#__codelineno-56-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-56-4" name="__codelineno-56-4" href="#__codelineno-56-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">100000</span><span class="p">;</span>
<a id="__codelineno-56-5" name="__codelineno-56-5" href="#__codelineno-56-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-56-6" name="__codelineno-56-6" href="#__codelineno-56-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-56-7" name="__codelineno-56-7" href="#__codelineno-56-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-56-8" name="__codelineno-56-8" href="#__codelineno-56-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-56-9" name="__codelineno-56-9" href="#__codelineno-56-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-57-1" name="__codelineno-57-1" href="#__codelineno-57-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-57-2" name="__codelineno-57-2" href="#__codelineno-57-2"></a><span class="k">fn</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-57-3" name="__codelineno-57-3" href="#__codelineno-57-3"></a><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-57-4" name="__codelineno-57-4" href="#__codelineno-57-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-57-5" name="__codelineno-57-5" href="#__codelineno-57-5"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100_000</span><span class="p">;</span>
<a id="__codelineno-57-6" name="__codelineno-57-6" href="#__codelineno-57-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">size</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-57-7" name="__codelineno-57-7" href="#__codelineno-57-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-57-8" name="__codelineno-57-8" href="#__codelineno-57-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-57-9" name="__codelineno-57-9" href="#__codelineno-57-9"></a><span class="w"> </span><span class="n">count</span>
<a id="__codelineno-57-10" name="__codelineno-57-10" href="#__codelineno-57-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-58-1" name="__codelineno-58-1" href="#__codelineno-58-1"></a><span class="cm">/* 常数阶 */</span>
<a id="__codelineno-58-2" name="__codelineno-58-2" href="#__codelineno-58-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-58-3" name="__codelineno-58-3" href="#__codelineno-58-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-58-4" name="__codelineno-58-4" href="#__codelineno-58-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span>
<a id="__codelineno-58-5" name="__codelineno-58-5" href="#__codelineno-58-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-58-6" name="__codelineno-58-6" href="#__codelineno-58-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-58-7" name="__codelineno-58-7" href="#__codelineno-58-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-58-8" name="__codelineno-58-8" href="#__codelineno-58-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-58-9" name="__codelineno-58-9" href="#__codelineno-58-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-58-10" name="__codelineno-58-10" href="#__codelineno-58-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-59-1" name="__codelineno-59-1" href="#__codelineno-59-1"></a><span class="c1">// 常数阶</span>
<a id="__codelineno-59-2" name="__codelineno-59-2" href="#__codelineno-59-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">constant</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-59-3" name="__codelineno-59-3" href="#__codelineno-59-3"></a><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-59-4" name="__codelineno-59-4" href="#__codelineno-59-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-59-5" name="__codelineno-59-5" href="#__codelineno-59-5"></a><span class="w"> </span><span class="kr">const</span><span class="w"> </span><span class="n">size</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100</span><span class="n">_000</span><span class="p">;</span>
<a id="__codelineno-59-6" name="__codelineno-59-6" href="#__codelineno-59-6"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-59-7" name="__codelineno-59-7" href="#__codelineno-59-7"></a><span class="w"> </span><span class="k">while</span><span class="p">(</span><span class="n">i</span><span class="o">&lt;</span><span class="n">size</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-59-8" name="__codelineno-59-8" href="#__codelineno-59-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-59-9" name="__codelineno-59-9" href="#__codelineno-59-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-59-10" name="__codelineno-59-10" href="#__codelineno-59-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-59-11" name="__codelineno-59-11" href="#__codelineno-59-11"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h3 id="2-on">2. &nbsp; 线性阶 <span class="arithmatex">\(O(n)\)</span><a class="headerlink" href="#2-on" title="Permanent link">&para;</a></h3>
<p>线性阶的操作数量相对于输入数据大小 <span class="arithmatex">\(n\)</span> 以线性级别增长。线性阶通常出现在单层循环中:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="6:12"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><input id="__tabbed_6_9" name="__tabbed_6" type="radio" /><input id="__tabbed_6_10" name="__tabbed_6" type="radio" /><input id="__tabbed_6_11" name="__tabbed_6" type="radio" /><input id="__tabbed_6_12" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Python</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Java</label><label for="__tabbed_6_4">C#</label><label for="__tabbed_6_5">Go</label><label for="__tabbed_6_6">Swift</label><label for="__tabbed_6_7">JS</label><label for="__tabbed_6_8">TS</label><label for="__tabbed_6_9">Dart</label><label for="__tabbed_6_10">Rust</label><label for="__tabbed_6_11">C</label><label for="__tabbed_6_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-60-1" name="__codelineno-60-1" href="#__codelineno-60-1"></a><span class="k">def</span> <span class="nf">linear</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-60-2" name="__codelineno-60-2" href="#__codelineno-60-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;线性阶&quot;&quot;&quot;</span>
<a id="__codelineno-60-3" name="__codelineno-60-3" href="#__codelineno-60-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-60-4" name="__codelineno-60-4" href="#__codelineno-60-4"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-60-5" name="__codelineno-60-5" href="#__codelineno-60-5"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-60-6" name="__codelineno-60-6" href="#__codelineno-60-6"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-61-1" name="__codelineno-61-1" href="#__codelineno-61-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-61-2" name="__codelineno-61-2" href="#__codelineno-61-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-61-3" name="__codelineno-61-3" href="#__codelineno-61-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-61-4" name="__codelineno-61-4" href="#__codelineno-61-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-61-5" name="__codelineno-61-5" href="#__codelineno-61-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-61-6" name="__codelineno-61-6" href="#__codelineno-61-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-61-7" name="__codelineno-61-7" href="#__codelineno-61-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-62-1" name="__codelineno-62-1" href="#__codelineno-62-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-62-2" name="__codelineno-62-2" href="#__codelineno-62-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-62-3" name="__codelineno-62-3" href="#__codelineno-62-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-62-4" name="__codelineno-62-4" href="#__codelineno-62-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-62-5" name="__codelineno-62-5" href="#__codelineno-62-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-62-6" name="__codelineno-62-6" href="#__codelineno-62-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-62-7" name="__codelineno-62-7" href="#__codelineno-62-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-63-1" name="__codelineno-63-1" href="#__codelineno-63-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-63-2" name="__codelineno-63-2" href="#__codelineno-63-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-63-3" name="__codelineno-63-3" href="#__codelineno-63-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-63-4" name="__codelineno-63-4" href="#__codelineno-63-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span>
<a id="__codelineno-63-5" name="__codelineno-63-5" href="#__codelineno-63-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-63-6" name="__codelineno-63-6" href="#__codelineno-63-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-63-7" name="__codelineno-63-7" href="#__codelineno-63-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-64-1" name="__codelineno-64-1" href="#__codelineno-64-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-64-2" name="__codelineno-64-2" href="#__codelineno-64-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">linear</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-64-3" name="__codelineno-64-3" href="#__codelineno-64-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-64-4" name="__codelineno-64-4" href="#__codelineno-64-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-64-5" name="__codelineno-64-5" href="#__codelineno-64-5"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-64-6" name="__codelineno-64-6" href="#__codelineno-64-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-64-7" name="__codelineno-64-7" href="#__codelineno-64-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-64-8" name="__codelineno-64-8" href="#__codelineno-64-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-65-1" name="__codelineno-65-1" href="#__codelineno-65-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-65-2" name="__codelineno-65-2" href="#__codelineno-65-2"></a><span class="kd">func</span> <span class="nf">linear</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-65-3" name="__codelineno-65-3" href="#__codelineno-65-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-65-4" name="__codelineno-65-4" href="#__codelineno-65-4"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-65-5" name="__codelineno-65-5" href="#__codelineno-65-5"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-65-6" name="__codelineno-65-6" href="#__codelineno-65-6"></a> <span class="p">}</span>
<a id="__codelineno-65-7" name="__codelineno-65-7" href="#__codelineno-65-7"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-65-8" name="__codelineno-65-8" href="#__codelineno-65-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-66-1" name="__codelineno-66-1" href="#__codelineno-66-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-66-2" name="__codelineno-66-2" href="#__codelineno-66-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linear</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-66-3" name="__codelineno-66-3" href="#__codelineno-66-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-66-4" name="__codelineno-66-4" href="#__codelineno-66-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-66-5" name="__codelineno-66-5" href="#__codelineno-66-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-66-6" name="__codelineno-66-6" href="#__codelineno-66-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-67-1" name="__codelineno-67-1" href="#__codelineno-67-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-67-2" name="__codelineno-67-2" href="#__codelineno-67-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linear</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-67-3" name="__codelineno-67-3" href="#__codelineno-67-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-67-4" name="__codelineno-67-4" href="#__codelineno-67-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-67-5" name="__codelineno-67-5" href="#__codelineno-67-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-67-6" name="__codelineno-67-6" href="#__codelineno-67-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-68-1" name="__codelineno-68-1" href="#__codelineno-68-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-68-2" name="__codelineno-68-2" href="#__codelineno-68-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-68-3" name="__codelineno-68-3" href="#__codelineno-68-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-68-4" name="__codelineno-68-4" href="#__codelineno-68-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-68-5" name="__codelineno-68-5" href="#__codelineno-68-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-68-6" name="__codelineno-68-6" href="#__codelineno-68-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-68-7" name="__codelineno-68-7" href="#__codelineno-68-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-68-8" name="__codelineno-68-8" href="#__codelineno-68-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-69-1" name="__codelineno-69-1" href="#__codelineno-69-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-69-2" name="__codelineno-69-2" href="#__codelineno-69-2"></a><span class="k">fn</span> <span class="nf">linear</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-69-3" name="__codelineno-69-3" href="#__codelineno-69-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-69-4" name="__codelineno-69-4" href="#__codelineno-69-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-69-5" name="__codelineno-69-5" href="#__codelineno-69-5"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-69-6" name="__codelineno-69-6" href="#__codelineno-69-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-69-7" name="__codelineno-69-7" href="#__codelineno-69-7"></a><span class="w"> </span><span class="n">count</span>
<a id="__codelineno-69-8" name="__codelineno-69-8" href="#__codelineno-69-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-70-1" name="__codelineno-70-1" href="#__codelineno-70-1"></a><span class="cm">/* 线性阶 */</span>
<a id="__codelineno-70-2" name="__codelineno-70-2" href="#__codelineno-70-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-70-3" name="__codelineno-70-3" href="#__codelineno-70-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-70-4" name="__codelineno-70-4" href="#__codelineno-70-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-70-5" name="__codelineno-70-5" href="#__codelineno-70-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-70-6" name="__codelineno-70-6" href="#__codelineno-70-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-70-7" name="__codelineno-70-7" href="#__codelineno-70-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-70-8" name="__codelineno-70-8" href="#__codelineno-70-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-71-1" name="__codelineno-71-1" href="#__codelineno-71-1"></a><span class="c1">// 线性阶</span>
<a id="__codelineno-71-2" name="__codelineno-71-2" href="#__codelineno-71-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">linear</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-71-3" name="__codelineno-71-3" href="#__codelineno-71-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-71-4" name="__codelineno-71-4" href="#__codelineno-71-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-71-5" name="__codelineno-71-5" href="#__codelineno-71-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-71-6" name="__codelineno-71-6" href="#__codelineno-71-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-71-7" name="__codelineno-71-7" href="#__codelineno-71-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-71-8" name="__codelineno-71-8" href="#__codelineno-71-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-71-9" name="__codelineno-71-9" href="#__codelineno-71-9"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>遍历数组和遍历链表等操作的时间复杂度均为 <span class="arithmatex">\(O(n)\)</span> ,其中 <span class="arithmatex">\(n\)</span> 为数组或链表的长度:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="7:12"><input checked="checked" id="__tabbed_7_1" name="__tabbed_7" type="radio" /><input id="__tabbed_7_2" name="__tabbed_7" type="radio" /><input id="__tabbed_7_3" name="__tabbed_7" type="radio" /><input id="__tabbed_7_4" name="__tabbed_7" type="radio" /><input id="__tabbed_7_5" name="__tabbed_7" type="radio" /><input id="__tabbed_7_6" name="__tabbed_7" type="radio" /><input id="__tabbed_7_7" name="__tabbed_7" type="radio" /><input id="__tabbed_7_8" name="__tabbed_7" type="radio" /><input id="__tabbed_7_9" name="__tabbed_7" type="radio" /><input id="__tabbed_7_10" name="__tabbed_7" type="radio" /><input id="__tabbed_7_11" name="__tabbed_7" type="radio" /><input id="__tabbed_7_12" name="__tabbed_7" type="radio" /><div class="tabbed-labels"><label for="__tabbed_7_1">Python</label><label for="__tabbed_7_2">C++</label><label for="__tabbed_7_3">Java</label><label for="__tabbed_7_4">C#</label><label for="__tabbed_7_5">Go</label><label for="__tabbed_7_6">Swift</label><label for="__tabbed_7_7">JS</label><label for="__tabbed_7_8">TS</label><label for="__tabbed_7_9">Dart</label><label for="__tabbed_7_10">Rust</label><label for="__tabbed_7_11">C</label><label for="__tabbed_7_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-72-1" name="__codelineno-72-1" href="#__codelineno-72-1"></a><span class="k">def</span> <span class="nf">array_traversal</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-72-2" name="__codelineno-72-2" href="#__codelineno-72-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;线性阶(遍历数组)&quot;&quot;&quot;</span>
<a id="__codelineno-72-3" name="__codelineno-72-3" href="#__codelineno-72-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-72-4" name="__codelineno-72-4" href="#__codelineno-72-4"></a> <span class="c1"># 循环次数与数组长度成正比</span>
<a id="__codelineno-72-5" name="__codelineno-72-5" href="#__codelineno-72-5"></a> <span class="k">for</span> <span class="n">num</span> <span class="ow">in</span> <span class="n">nums</span><span class="p">:</span>
<a id="__codelineno-72-6" name="__codelineno-72-6" href="#__codelineno-72-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-72-7" name="__codelineno-72-7" href="#__codelineno-72-7"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-73-1" name="__codelineno-73-1" href="#__codelineno-73-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-73-2" name="__codelineno-73-2" href="#__codelineno-73-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-73-3" name="__codelineno-73-3" href="#__codelineno-73-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-73-4" name="__codelineno-73-4" href="#__codelineno-73-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-73-5" name="__codelineno-73-5" href="#__codelineno-73-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-73-6" name="__codelineno-73-6" href="#__codelineno-73-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-73-7" name="__codelineno-73-7" href="#__codelineno-73-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-73-8" name="__codelineno-73-8" href="#__codelineno-73-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-73-9" name="__codelineno-73-9" href="#__codelineno-73-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-74-1" name="__codelineno-74-1" href="#__codelineno-74-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-74-2" name="__codelineno-74-2" href="#__codelineno-74-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-74-3" name="__codelineno-74-3" href="#__codelineno-74-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-74-4" name="__codelineno-74-4" href="#__codelineno-74-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-74-5" name="__codelineno-74-5" href="#__codelineno-74-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-74-6" name="__codelineno-74-6" href="#__codelineno-74-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-74-7" name="__codelineno-74-7" href="#__codelineno-74-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-74-8" name="__codelineno-74-8" href="#__codelineno-74-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-74-9" name="__codelineno-74-9" href="#__codelineno-74-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-75-1" name="__codelineno-75-1" href="#__codelineno-75-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-75-2" name="__codelineno-75-2" href="#__codelineno-75-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">ArrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-75-3" name="__codelineno-75-3" href="#__codelineno-75-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-75-4" name="__codelineno-75-4" href="#__codelineno-75-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-75-5" name="__codelineno-75-5" href="#__codelineno-75-5"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-75-6" name="__codelineno-75-6" href="#__codelineno-75-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-75-7" name="__codelineno-75-7" href="#__codelineno-75-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-75-8" name="__codelineno-75-8" href="#__codelineno-75-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-75-9" name="__codelineno-75-9" href="#__codelineno-75-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-76-1" name="__codelineno-76-1" href="#__codelineno-76-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-76-2" name="__codelineno-76-2" href="#__codelineno-76-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">arrayTraversal</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-76-3" name="__codelineno-76-3" href="#__codelineno-76-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-76-4" name="__codelineno-76-4" href="#__codelineno-76-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-76-5" name="__codelineno-76-5" href="#__codelineno-76-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-76-6" name="__codelineno-76-6" href="#__codelineno-76-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-76-7" name="__codelineno-76-7" href="#__codelineno-76-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-76-8" name="__codelineno-76-8" href="#__codelineno-76-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-76-9" name="__codelineno-76-9" href="#__codelineno-76-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-77-1" name="__codelineno-77-1" href="#__codelineno-77-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-77-2" name="__codelineno-77-2" href="#__codelineno-77-2"></a><span class="kd">func</span> <span class="nf">arrayTraversal</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-77-3" name="__codelineno-77-3" href="#__codelineno-77-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-77-4" name="__codelineno-77-4" href="#__codelineno-77-4"></a> <span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-77-5" name="__codelineno-77-5" href="#__codelineno-77-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="n">nums</span> <span class="p">{</span>
<a id="__codelineno-77-6" name="__codelineno-77-6" href="#__codelineno-77-6"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-77-7" name="__codelineno-77-7" href="#__codelineno-77-7"></a> <span class="p">}</span>
<a id="__codelineno-77-8" name="__codelineno-77-8" href="#__codelineno-77-8"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-77-9" name="__codelineno-77-9" href="#__codelineno-77-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-78-1" name="__codelineno-78-1" href="#__codelineno-78-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-78-2" name="__codelineno-78-2" href="#__codelineno-78-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">arrayTraversal</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-78-3" name="__codelineno-78-3" href="#__codelineno-78-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-78-4" name="__codelineno-78-4" href="#__codelineno-78-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-78-5" name="__codelineno-78-5" href="#__codelineno-78-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-78-6" name="__codelineno-78-6" href="#__codelineno-78-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-78-7" name="__codelineno-78-7" href="#__codelineno-78-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-78-8" name="__codelineno-78-8" href="#__codelineno-78-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-78-9" name="__codelineno-78-9" href="#__codelineno-78-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-79-1" name="__codelineno-79-1" href="#__codelineno-79-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-79-2" name="__codelineno-79-2" href="#__codelineno-79-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">arrayTraversal</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-79-3" name="__codelineno-79-3" href="#__codelineno-79-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-79-4" name="__codelineno-79-4" href="#__codelineno-79-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-79-5" name="__codelineno-79-5" href="#__codelineno-79-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-79-6" name="__codelineno-79-6" href="#__codelineno-79-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-79-7" name="__codelineno-79-7" href="#__codelineno-79-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-79-8" name="__codelineno-79-8" href="#__codelineno-79-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-79-9" name="__codelineno-79-9" href="#__codelineno-79-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-80-1" name="__codelineno-80-1" href="#__codelineno-80-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-80-2" name="__codelineno-80-2" href="#__codelineno-80-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">arrayTraversal</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-80-3" name="__codelineno-80-3" href="#__codelineno-80-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-80-4" name="__codelineno-80-4" href="#__codelineno-80-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-80-5" name="__codelineno-80-5" href="#__codelineno-80-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="kt">num</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-80-6" name="__codelineno-80-6" href="#__codelineno-80-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-80-7" name="__codelineno-80-7" href="#__codelineno-80-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-80-8" name="__codelineno-80-8" href="#__codelineno-80-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-80-9" name="__codelineno-80-9" href="#__codelineno-80-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-81-1" name="__codelineno-81-1" href="#__codelineno-81-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-81-2" name="__codelineno-81-2" href="#__codelineno-81-2"></a><span class="k">fn</span> <span class="nf">array_traversal</span><span class="p">(</span><span class="n">nums</span>: <span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">])</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-81-3" name="__codelineno-81-3" href="#__codelineno-81-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-81-4" name="__codelineno-81-4" href="#__codelineno-81-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-81-5" name="__codelineno-81-5" href="#__codelineno-81-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-81-6" name="__codelineno-81-6" href="#__codelineno-81-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-81-7" name="__codelineno-81-7" href="#__codelineno-81-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-81-8" name="__codelineno-81-8" href="#__codelineno-81-8"></a><span class="w"> </span><span class="n">count</span>
<a id="__codelineno-81-9" name="__codelineno-81-9" href="#__codelineno-81-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-82-1" name="__codelineno-82-1" href="#__codelineno-82-1"></a><span class="cm">/* 线性阶(遍历数组) */</span>
<a id="__codelineno-82-2" name="__codelineno-82-2" href="#__codelineno-82-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-82-3" name="__codelineno-82-3" href="#__codelineno-82-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-82-4" name="__codelineno-82-4" href="#__codelineno-82-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-82-5" name="__codelineno-82-5" href="#__codelineno-82-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-82-6" name="__codelineno-82-6" href="#__codelineno-82-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-82-7" name="__codelineno-82-7" href="#__codelineno-82-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-82-8" name="__codelineno-82-8" href="#__codelineno-82-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-82-9" name="__codelineno-82-9" href="#__codelineno-82-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-83-1" name="__codelineno-83-1" href="#__codelineno-83-1"></a><span class="c1">// 线性阶(遍历数组)</span>
<a id="__codelineno-83-2" name="__codelineno-83-2" href="#__codelineno-83-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">arrayTraversal</span><span class="p">(</span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-83-3" name="__codelineno-83-3" href="#__codelineno-83-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-83-4" name="__codelineno-83-4" href="#__codelineno-83-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-83-5" name="__codelineno-83-5" href="#__codelineno-83-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="o">|</span><span class="n">_</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-83-6" name="__codelineno-83-6" href="#__codelineno-83-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-83-7" name="__codelineno-83-7" href="#__codelineno-83-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-83-8" name="__codelineno-83-8" href="#__codelineno-83-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-83-9" name="__codelineno-83-9" href="#__codelineno-83-9"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>值得注意的是,<strong>输入数据大小 <span class="arithmatex">\(n\)</span> 需根据输入数据的类型来具体确定</strong>。比如在第一个示例中,变量 <span class="arithmatex">\(n\)</span> 为输入数据大小;在第二个示例中,数组长度 <span class="arithmatex">\(n\)</span> 为数据大小。</p>
<h3 id="3-on2">3. &nbsp; 平方阶 <span class="arithmatex">\(O(n^2)\)</span><a class="headerlink" href="#3-on2" title="Permanent link">&para;</a></h3>
<p>平方阶的操作数量相对于输入数据大小 <span class="arithmatex">\(n\)</span> 以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环都为 <span class="arithmatex">\(O(n)\)</span> ,因此总体为 <span class="arithmatex">\(O(n^2)\)</span> </p>
<div class="tabbed-set tabbed-alternate" data-tabs="8:12"><input checked="checked" id="__tabbed_8_1" name="__tabbed_8" type="radio" /><input id="__tabbed_8_2" name="__tabbed_8" type="radio" /><input id="__tabbed_8_3" name="__tabbed_8" type="radio" /><input id="__tabbed_8_4" name="__tabbed_8" type="radio" /><input id="__tabbed_8_5" name="__tabbed_8" type="radio" /><input id="__tabbed_8_6" name="__tabbed_8" type="radio" /><input id="__tabbed_8_7" name="__tabbed_8" type="radio" /><input id="__tabbed_8_8" name="__tabbed_8" type="radio" /><input id="__tabbed_8_9" name="__tabbed_8" type="radio" /><input id="__tabbed_8_10" name="__tabbed_8" type="radio" /><input id="__tabbed_8_11" name="__tabbed_8" type="radio" /><input id="__tabbed_8_12" name="__tabbed_8" type="radio" /><div class="tabbed-labels"><label for="__tabbed_8_1">Python</label><label for="__tabbed_8_2">C++</label><label for="__tabbed_8_3">Java</label><label for="__tabbed_8_4">C#</label><label for="__tabbed_8_5">Go</label><label for="__tabbed_8_6">Swift</label><label for="__tabbed_8_7">JS</label><label for="__tabbed_8_8">TS</label><label for="__tabbed_8_9">Dart</label><label for="__tabbed_8_10">Rust</label><label for="__tabbed_8_11">C</label><label for="__tabbed_8_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-84-1" name="__codelineno-84-1" href="#__codelineno-84-1"></a><span class="k">def</span> <span class="nf">quadratic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-84-2" name="__codelineno-84-2" href="#__codelineno-84-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;平方阶&quot;&quot;&quot;</span>
<a id="__codelineno-84-3" name="__codelineno-84-3" href="#__codelineno-84-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-84-4" name="__codelineno-84-4" href="#__codelineno-84-4"></a> <span class="c1"># 循环次数与数组长度成平方关系</span>
<a id="__codelineno-84-5" name="__codelineno-84-5" href="#__codelineno-84-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-84-6" name="__codelineno-84-6" href="#__codelineno-84-6"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-84-7" name="__codelineno-84-7" href="#__codelineno-84-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-84-8" name="__codelineno-84-8" href="#__codelineno-84-8"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-85-1" name="__codelineno-85-1" href="#__codelineno-85-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-85-2" name="__codelineno-85-2" href="#__codelineno-85-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-85-3" name="__codelineno-85-3" href="#__codelineno-85-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-85-4" name="__codelineno-85-4" href="#__codelineno-85-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-85-5" name="__codelineno-85-5" href="#__codelineno-85-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-85-6" name="__codelineno-85-6" href="#__codelineno-85-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-85-7" name="__codelineno-85-7" href="#__codelineno-85-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-85-8" name="__codelineno-85-8" href="#__codelineno-85-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-85-9" name="__codelineno-85-9" href="#__codelineno-85-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-85-10" name="__codelineno-85-10" href="#__codelineno-85-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-85-11" name="__codelineno-85-11" href="#__codelineno-85-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-86-1" name="__codelineno-86-1" href="#__codelineno-86-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-86-2" name="__codelineno-86-2" href="#__codelineno-86-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-86-3" name="__codelineno-86-3" href="#__codelineno-86-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-86-4" name="__codelineno-86-4" href="#__codelineno-86-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-86-5" name="__codelineno-86-5" href="#__codelineno-86-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-86-6" name="__codelineno-86-6" href="#__codelineno-86-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-86-7" name="__codelineno-86-7" href="#__codelineno-86-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-86-8" name="__codelineno-86-8" href="#__codelineno-86-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-86-9" name="__codelineno-86-9" href="#__codelineno-86-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-86-10" name="__codelineno-86-10" href="#__codelineno-86-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-86-11" name="__codelineno-86-11" href="#__codelineno-86-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-87-1" name="__codelineno-87-1" href="#__codelineno-87-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-87-2" name="__codelineno-87-2" href="#__codelineno-87-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-87-3" name="__codelineno-87-3" href="#__codelineno-87-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-87-4" name="__codelineno-87-4" href="#__codelineno-87-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-87-5" name="__codelineno-87-5" href="#__codelineno-87-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-87-6" name="__codelineno-87-6" href="#__codelineno-87-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-87-7" name="__codelineno-87-7" href="#__codelineno-87-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-87-8" name="__codelineno-87-8" href="#__codelineno-87-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-87-9" name="__codelineno-87-9" href="#__codelineno-87-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-87-10" name="__codelineno-87-10" href="#__codelineno-87-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-87-11" name="__codelineno-87-11" href="#__codelineno-87-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-88-1" name="__codelineno-88-1" href="#__codelineno-88-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-88-2" name="__codelineno-88-2" href="#__codelineno-88-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">quadratic</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-88-3" name="__codelineno-88-3" href="#__codelineno-88-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-88-4" name="__codelineno-88-4" href="#__codelineno-88-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-88-5" name="__codelineno-88-5" href="#__codelineno-88-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-88-6" name="__codelineno-88-6" href="#__codelineno-88-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-88-7" name="__codelineno-88-7" href="#__codelineno-88-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-88-8" name="__codelineno-88-8" href="#__codelineno-88-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-88-9" name="__codelineno-88-9" href="#__codelineno-88-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-88-10" name="__codelineno-88-10" href="#__codelineno-88-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-88-11" name="__codelineno-88-11" href="#__codelineno-88-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-89-1" name="__codelineno-89-1" href="#__codelineno-89-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-89-2" name="__codelineno-89-2" href="#__codelineno-89-2"></a><span class="kd">func</span> <span class="nf">quadratic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-89-3" name="__codelineno-89-3" href="#__codelineno-89-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-89-4" name="__codelineno-89-4" href="#__codelineno-89-4"></a> <span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-89-5" name="__codelineno-89-5" href="#__codelineno-89-5"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-89-6" name="__codelineno-89-6" href="#__codelineno-89-6"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-89-7" name="__codelineno-89-7" href="#__codelineno-89-7"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-89-8" name="__codelineno-89-8" href="#__codelineno-89-8"></a> <span class="p">}</span>
<a id="__codelineno-89-9" name="__codelineno-89-9" href="#__codelineno-89-9"></a> <span class="p">}</span>
<a id="__codelineno-89-10" name="__codelineno-89-10" href="#__codelineno-89-10"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-89-11" name="__codelineno-89-11" href="#__codelineno-89-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-90-1" name="__codelineno-90-1" href="#__codelineno-90-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-90-2" name="__codelineno-90-2" href="#__codelineno-90-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">quadratic</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-90-3" name="__codelineno-90-3" href="#__codelineno-90-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-90-4" name="__codelineno-90-4" href="#__codelineno-90-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-90-5" name="__codelineno-90-5" href="#__codelineno-90-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-90-6" name="__codelineno-90-6" href="#__codelineno-90-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-90-7" name="__codelineno-90-7" href="#__codelineno-90-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-90-8" name="__codelineno-90-8" href="#__codelineno-90-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-90-9" name="__codelineno-90-9" href="#__codelineno-90-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-90-10" name="__codelineno-90-10" href="#__codelineno-90-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-90-11" name="__codelineno-90-11" href="#__codelineno-90-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-91-1" name="__codelineno-91-1" href="#__codelineno-91-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-91-2" name="__codelineno-91-2" href="#__codelineno-91-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">quadratic</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-91-3" name="__codelineno-91-3" href="#__codelineno-91-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-91-4" name="__codelineno-91-4" href="#__codelineno-91-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-91-5" name="__codelineno-91-5" href="#__codelineno-91-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-91-6" name="__codelineno-91-6" href="#__codelineno-91-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-91-7" name="__codelineno-91-7" href="#__codelineno-91-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-91-8" name="__codelineno-91-8" href="#__codelineno-91-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-91-9" name="__codelineno-91-9" href="#__codelineno-91-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-91-10" name="__codelineno-91-10" href="#__codelineno-91-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-91-11" name="__codelineno-91-11" href="#__codelineno-91-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-92-1" name="__codelineno-92-1" href="#__codelineno-92-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-92-2" name="__codelineno-92-2" href="#__codelineno-92-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-92-3" name="__codelineno-92-3" href="#__codelineno-92-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-92-4" name="__codelineno-92-4" href="#__codelineno-92-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-92-5" name="__codelineno-92-5" href="#__codelineno-92-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-92-6" name="__codelineno-92-6" href="#__codelineno-92-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-92-7" name="__codelineno-92-7" href="#__codelineno-92-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-92-8" name="__codelineno-92-8" href="#__codelineno-92-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-92-9" name="__codelineno-92-9" href="#__codelineno-92-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-92-10" name="__codelineno-92-10" href="#__codelineno-92-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-92-11" name="__codelineno-92-11" href="#__codelineno-92-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-93-1" name="__codelineno-93-1" href="#__codelineno-93-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-93-2" name="__codelineno-93-2" href="#__codelineno-93-2"></a><span class="k">fn</span> <span class="nf">quadratic</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-93-3" name="__codelineno-93-3" href="#__codelineno-93-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-93-4" name="__codelineno-93-4" href="#__codelineno-93-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-93-5" name="__codelineno-93-5" href="#__codelineno-93-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-93-6" name="__codelineno-93-6" href="#__codelineno-93-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-93-7" name="__codelineno-93-7" href="#__codelineno-93-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-93-8" name="__codelineno-93-8" href="#__codelineno-93-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-93-9" name="__codelineno-93-9" href="#__codelineno-93-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-93-10" name="__codelineno-93-10" href="#__codelineno-93-10"></a><span class="w"> </span><span class="n">count</span>
<a id="__codelineno-93-11" name="__codelineno-93-11" href="#__codelineno-93-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-94-1" name="__codelineno-94-1" href="#__codelineno-94-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-94-2" name="__codelineno-94-2" href="#__codelineno-94-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-94-3" name="__codelineno-94-3" href="#__codelineno-94-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-94-4" name="__codelineno-94-4" href="#__codelineno-94-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-94-5" name="__codelineno-94-5" href="#__codelineno-94-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-94-6" name="__codelineno-94-6" href="#__codelineno-94-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-94-7" name="__codelineno-94-7" href="#__codelineno-94-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-94-8" name="__codelineno-94-8" href="#__codelineno-94-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-94-9" name="__codelineno-94-9" href="#__codelineno-94-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-94-10" name="__codelineno-94-10" href="#__codelineno-94-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-94-11" name="__codelineno-94-11" href="#__codelineno-94-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-95-1" name="__codelineno-95-1" href="#__codelineno-95-1"></a><span class="c1">// 平方阶</span>
<a id="__codelineno-95-2" name="__codelineno-95-2" href="#__codelineno-95-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">quadratic</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-95-3" name="__codelineno-95-3" href="#__codelineno-95-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-95-4" name="__codelineno-95-4" href="#__codelineno-95-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-95-5" name="__codelineno-95-5" href="#__codelineno-95-5"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-95-6" name="__codelineno-95-6" href="#__codelineno-95-6"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-95-7" name="__codelineno-95-7" href="#__codelineno-95-7"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">j</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-95-8" name="__codelineno-95-8" href="#__codelineno-95-8"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-95-9" name="__codelineno-95-9" href="#__codelineno-95-9"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-95-10" name="__codelineno-95-10" href="#__codelineno-95-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-95-11" name="__codelineno-95-11" href="#__codelineno-95-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-95-12" name="__codelineno-95-12" href="#__codelineno-95-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-95-13" name="__codelineno-95-13" href="#__codelineno-95-13"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>图 2-10 对比了常数阶、线性阶和平方阶三种时间复杂度。</p>
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_constant_linear_quadratic.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="常数阶、线性阶和平方阶的时间复杂度" class="animation-figure" src="../time_complexity.assets/time_complexity_constant_linear_quadratic.png" /></a></p>
<p align="center"> 图 2-10 &nbsp; 常数阶、线性阶和平方阶的时间复杂度 </p>
<p>以冒泡排序为例,外层循环执行 <span class="arithmatex">\(n - 1\)</span> 次,内层循环执行 <span class="arithmatex">\(n-1\)</span><span class="arithmatex">\(n-2\)</span><span class="arithmatex">\(\dots\)</span><span class="arithmatex">\(2\)</span><span class="arithmatex">\(1\)</span> 次,平均为 <span class="arithmatex">\(n / 2\)</span> 次,因此时间复杂度为 <span class="arithmatex">\(O((n - 1) n / 2) = O(n^2)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="9:12"><input checked="checked" id="__tabbed_9_1" name="__tabbed_9" type="radio" /><input id="__tabbed_9_2" name="__tabbed_9" type="radio" /><input id="__tabbed_9_3" name="__tabbed_9" type="radio" /><input id="__tabbed_9_4" name="__tabbed_9" type="radio" /><input id="__tabbed_9_5" name="__tabbed_9" type="radio" /><input id="__tabbed_9_6" name="__tabbed_9" type="radio" /><input id="__tabbed_9_7" name="__tabbed_9" type="radio" /><input id="__tabbed_9_8" name="__tabbed_9" type="radio" /><input id="__tabbed_9_9" name="__tabbed_9" type="radio" /><input id="__tabbed_9_10" name="__tabbed_9" type="radio" /><input id="__tabbed_9_11" name="__tabbed_9" type="radio" /><input id="__tabbed_9_12" name="__tabbed_9" type="radio" /><div class="tabbed-labels"><label for="__tabbed_9_1">Python</label><label for="__tabbed_9_2">C++</label><label for="__tabbed_9_3">Java</label><label for="__tabbed_9_4">C#</label><label for="__tabbed_9_5">Go</label><label for="__tabbed_9_6">Swift</label><label for="__tabbed_9_7">JS</label><label for="__tabbed_9_8">TS</label><label for="__tabbed_9_9">Dart</label><label for="__tabbed_9_10">Rust</label><label for="__tabbed_9_11">C</label><label for="__tabbed_9_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-96-1" name="__codelineno-96-1" href="#__codelineno-96-1"></a><span class="k">def</span> <span class="nf">bubble_sort</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-96-2" name="__codelineno-96-2" href="#__codelineno-96-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;平方阶(冒泡排序)&quot;&quot;&quot;</span>
<a id="__codelineno-96-3" name="__codelineno-96-3" href="#__codelineno-96-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span> <span class="c1"># 计数器</span>
<a id="__codelineno-96-4" name="__codelineno-96-4" href="#__codelineno-96-4"></a> <span class="c1"># 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-96-5" name="__codelineno-96-5" href="#__codelineno-96-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nums</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-96-6" name="__codelineno-96-6" href="#__codelineno-96-6"></a> <span class="c1"># 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
<a id="__codelineno-96-7" name="__codelineno-96-7" href="#__codelineno-96-7"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">i</span><span class="p">):</span>
<a id="__codelineno-96-8" name="__codelineno-96-8" href="#__codelineno-96-8"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]:</span>
<a id="__codelineno-96-9" name="__codelineno-96-9" href="#__codelineno-96-9"></a> <span class="c1"># 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-96-10" name="__codelineno-96-10" href="#__codelineno-96-10"></a> <span class="n">tmp</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-96-11" name="__codelineno-96-11" href="#__codelineno-96-11"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-96-12" name="__codelineno-96-12" href="#__codelineno-96-12"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">tmp</span>
<a id="__codelineno-96-13" name="__codelineno-96-13" href="#__codelineno-96-13"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">3</span> <span class="c1"># 元素交换包含 3 个单元操作</span>
<a id="__codelineno-96-14" name="__codelineno-96-14" href="#__codelineno-96-14"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-97-1" name="__codelineno-97-1" href="#__codelineno-97-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-97-2" name="__codelineno-97-2" href="#__codelineno-97-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-97-3" name="__codelineno-97-3" href="#__codelineno-97-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-97-4" name="__codelineno-97-4" href="#__codelineno-97-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-97-5" name="__codelineno-97-5" href="#__codelineno-97-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-97-6" name="__codelineno-97-6" href="#__codelineno-97-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
<a id="__codelineno-97-7" name="__codelineno-97-7" href="#__codelineno-97-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-97-8" name="__codelineno-97-8" href="#__codelineno-97-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-97-9" name="__codelineno-97-9" href="#__codelineno-97-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-97-10" name="__codelineno-97-10" href="#__codelineno-97-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-97-11" name="__codelineno-97-11" href="#__codelineno-97-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-97-12" name="__codelineno-97-12" href="#__codelineno-97-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-97-13" name="__codelineno-97-13" href="#__codelineno-97-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-97-14" name="__codelineno-97-14" href="#__codelineno-97-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-97-15" name="__codelineno-97-15" href="#__codelineno-97-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-97-16" name="__codelineno-97-16" href="#__codelineno-97-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-97-17" name="__codelineno-97-17" href="#__codelineno-97-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-97-18" name="__codelineno-97-18" href="#__codelineno-97-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-98-1" name="__codelineno-98-1" href="#__codelineno-98-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-98-2" name="__codelineno-98-2" href="#__codelineno-98-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-98-3" name="__codelineno-98-3" href="#__codelineno-98-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-98-4" name="__codelineno-98-4" href="#__codelineno-98-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-98-5" name="__codelineno-98-5" href="#__codelineno-98-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-98-6" name="__codelineno-98-6" href="#__codelineno-98-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
<a id="__codelineno-98-7" name="__codelineno-98-7" href="#__codelineno-98-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-98-8" name="__codelineno-98-8" href="#__codelineno-98-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-98-9" name="__codelineno-98-9" href="#__codelineno-98-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-98-10" name="__codelineno-98-10" href="#__codelineno-98-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-98-11" name="__codelineno-98-11" href="#__codelineno-98-11"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-98-12" name="__codelineno-98-12" href="#__codelineno-98-12"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-98-13" name="__codelineno-98-13" href="#__codelineno-98-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-98-14" name="__codelineno-98-14" href="#__codelineno-98-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-98-15" name="__codelineno-98-15" href="#__codelineno-98-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-98-16" name="__codelineno-98-16" href="#__codelineno-98-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-98-17" name="__codelineno-98-17" href="#__codelineno-98-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-98-18" name="__codelineno-98-18" href="#__codelineno-98-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-99-1" name="__codelineno-99-1" href="#__codelineno-99-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-99-2" name="__codelineno-99-2" href="#__codelineno-99-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">BubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-99-3" name="__codelineno-99-3" href="#__codelineno-99-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-99-4" name="__codelineno-99-4" href="#__codelineno-99-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-99-5" name="__codelineno-99-5" href="#__codelineno-99-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-99-6" name="__codelineno-99-6" href="#__codelineno-99-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-99-7" name="__codelineno-99-7" href="#__codelineno-99-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-99-8" name="__codelineno-99-8" href="#__codelineno-99-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-99-9" name="__codelineno-99-9" href="#__codelineno-99-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-99-10" name="__codelineno-99-10" href="#__codelineno-99-10"></a><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">]);</span>
<a id="__codelineno-99-11" name="__codelineno-99-11" href="#__codelineno-99-11"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-99-12" name="__codelineno-99-12" href="#__codelineno-99-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-99-13" name="__codelineno-99-13" href="#__codelineno-99-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-99-14" name="__codelineno-99-14" href="#__codelineno-99-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-99-15" name="__codelineno-99-15" href="#__codelineno-99-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-99-16" name="__codelineno-99-16" href="#__codelineno-99-16"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-100-1" name="__codelineno-100-1" href="#__codelineno-100-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-100-2" name="__codelineno-100-2" href="#__codelineno-100-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">bubbleSort</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-100-3" name="__codelineno-100-3" href="#__codelineno-100-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-100-4" name="__codelineno-100-4" href="#__codelineno-100-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-100-5" name="__codelineno-100-5" href="#__codelineno-100-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">--</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-100-6" name="__codelineno-100-6" href="#__codelineno-100-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
<a id="__codelineno-100-7" name="__codelineno-100-7" href="#__codelineno-100-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-100-8" name="__codelineno-100-8" href="#__codelineno-100-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-100-9" name="__codelineno-100-9" href="#__codelineno-100-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-100-10" name="__codelineno-100-10" href="#__codelineno-100-10"></a><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span>
<a id="__codelineno-100-11" name="__codelineno-100-11" href="#__codelineno-100-11"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-100-12" name="__codelineno-100-12" href="#__codelineno-100-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">tmp</span>
<a id="__codelineno-100-13" name="__codelineno-100-13" href="#__codelineno-100-13"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-100-14" name="__codelineno-100-14" href="#__codelineno-100-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-100-15" name="__codelineno-100-15" href="#__codelineno-100-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-100-16" name="__codelineno-100-16" href="#__codelineno-100-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-100-17" name="__codelineno-100-17" href="#__codelineno-100-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-100-18" name="__codelineno-100-18" href="#__codelineno-100-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-101-1" name="__codelineno-101-1" href="#__codelineno-101-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-101-2" name="__codelineno-101-2" href="#__codelineno-101-2"></a><span class="kd">func</span> <span class="nf">bubbleSort</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-101-3" name="__codelineno-101-3" href="#__codelineno-101-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span> <span class="c1">// 计数器</span>
<a id="__codelineno-101-4" name="__codelineno-101-4" href="#__codelineno-101-4"></a> <span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-101-5" name="__codelineno-101-5" href="#__codelineno-101-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="bp">stride</span><span class="p">(</span><span class="n">from</span><span class="p">:</span> <span class="n">nums</span><span class="p">.</span><span class="bp">count</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">to</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">by</span><span class="p">:</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-101-6" name="__codelineno-101-6" href="#__codelineno-101-6"></a> <span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-101-7" name="__codelineno-101-7" href="#__codelineno-101-7"></a> <span class="k">for</span> <span class="n">j</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">i</span> <span class="p">{</span>
<a id="__codelineno-101-8" name="__codelineno-101-8" href="#__codelineno-101-8"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-101-9" name="__codelineno-101-9" href="#__codelineno-101-9"></a> <span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-101-10" name="__codelineno-101-10" href="#__codelineno-101-10"></a> <span class="kd">let</span> <span class="nv">tmp</span> <span class="p">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-101-11" name="__codelineno-101-11" href="#__codelineno-101-11"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="p">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-101-12" name="__codelineno-101-12" href="#__codelineno-101-12"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="p">=</span> <span class="n">tmp</span>
<a id="__codelineno-101-13" name="__codelineno-101-13" href="#__codelineno-101-13"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">3</span> <span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-101-14" name="__codelineno-101-14" href="#__codelineno-101-14"></a> <span class="p">}</span>
<a id="__codelineno-101-15" name="__codelineno-101-15" href="#__codelineno-101-15"></a> <span class="p">}</span>
<a id="__codelineno-101-16" name="__codelineno-101-16" href="#__codelineno-101-16"></a> <span class="p">}</span>
<a id="__codelineno-101-17" name="__codelineno-101-17" href="#__codelineno-101-17"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-101-18" name="__codelineno-101-18" href="#__codelineno-101-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-102-1" name="__codelineno-102-1" href="#__codelineno-102-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-102-2" name="__codelineno-102-2" href="#__codelineno-102-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">bubbleSort</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-102-3" name="__codelineno-102-3" href="#__codelineno-102-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-102-4" name="__codelineno-102-4" href="#__codelineno-102-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-102-5" name="__codelineno-102-5" href="#__codelineno-102-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-102-6" name="__codelineno-102-6" href="#__codelineno-102-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
<a id="__codelineno-102-7" name="__codelineno-102-7" href="#__codelineno-102-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-102-8" name="__codelineno-102-8" href="#__codelineno-102-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-102-9" name="__codelineno-102-9" href="#__codelineno-102-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-102-10" name="__codelineno-102-10" href="#__codelineno-102-10"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">];</span>
<a id="__codelineno-102-11" name="__codelineno-102-11" href="#__codelineno-102-11"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-102-12" name="__codelineno-102-12" href="#__codelineno-102-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
<a id="__codelineno-102-13" name="__codelineno-102-13" href="#__codelineno-102-13"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-102-14" name="__codelineno-102-14" href="#__codelineno-102-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-102-15" name="__codelineno-102-15" href="#__codelineno-102-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-102-16" name="__codelineno-102-16" href="#__codelineno-102-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-102-17" name="__codelineno-102-17" href="#__codelineno-102-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-102-18" name="__codelineno-102-18" href="#__codelineno-102-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-103-1" name="__codelineno-103-1" href="#__codelineno-103-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-103-2" name="__codelineno-103-2" href="#__codelineno-103-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">bubbleSort</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-103-3" name="__codelineno-103-3" href="#__codelineno-103-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-103-4" name="__codelineno-103-4" href="#__codelineno-103-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-103-5" name="__codelineno-103-5" href="#__codelineno-103-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-103-6" name="__codelineno-103-6" href="#__codelineno-103-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
<a id="__codelineno-103-7" name="__codelineno-103-7" href="#__codelineno-103-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-103-8" name="__codelineno-103-8" href="#__codelineno-103-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-103-9" name="__codelineno-103-9" href="#__codelineno-103-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-103-10" name="__codelineno-103-10" href="#__codelineno-103-10"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">];</span>
<a id="__codelineno-103-11" name="__codelineno-103-11" href="#__codelineno-103-11"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-103-12" name="__codelineno-103-12" href="#__codelineno-103-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
<a id="__codelineno-103-13" name="__codelineno-103-13" href="#__codelineno-103-13"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-103-14" name="__codelineno-103-14" href="#__codelineno-103-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-103-15" name="__codelineno-103-15" href="#__codelineno-103-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-103-16" name="__codelineno-103-16" href="#__codelineno-103-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-103-17" name="__codelineno-103-17" href="#__codelineno-103-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-103-18" name="__codelineno-103-18" href="#__codelineno-103-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-104-1" name="__codelineno-104-1" href="#__codelineno-104-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-104-2" name="__codelineno-104-2" href="#__codelineno-104-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">bubbleSort</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-104-3" name="__codelineno-104-3" href="#__codelineno-104-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-104-4" name="__codelineno-104-4" href="#__codelineno-104-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-104-5" name="__codelineno-104-5" href="#__codelineno-104-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-104-6" name="__codelineno-104-6" href="#__codelineno-104-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
<a id="__codelineno-104-7" name="__codelineno-104-7" href="#__codelineno-104-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-104-8" name="__codelineno-104-8" href="#__codelineno-104-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-104-9" name="__codelineno-104-9" href="#__codelineno-104-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-104-10" name="__codelineno-104-10" href="#__codelineno-104-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-104-11" name="__codelineno-104-11" href="#__codelineno-104-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
<a id="__codelineno-104-12" name="__codelineno-104-12" href="#__codelineno-104-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-104-13" name="__codelineno-104-13" href="#__codelineno-104-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-104-14" name="__codelineno-104-14" href="#__codelineno-104-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-104-15" name="__codelineno-104-15" href="#__codelineno-104-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-104-16" name="__codelineno-104-16" href="#__codelineno-104-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-104-17" name="__codelineno-104-17" href="#__codelineno-104-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-104-18" name="__codelineno-104-18" href="#__codelineno-104-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-105-1" name="__codelineno-105-1" href="#__codelineno-105-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-105-2" name="__codelineno-105-2" href="#__codelineno-105-2"></a><span class="k">fn</span> <span class="nf">bubble_sort</span><span class="p">(</span><span class="n">nums</span>: <span class="kp">&amp;</span><span class="nc">mut</span><span class="w"> </span><span class="p">[</span><span class="kt">i32</span><span class="p">])</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-105-3" name="__codelineno-105-3" href="#__codelineno-105-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-105-4" name="__codelineno-105-4" href="#__codelineno-105-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-105-5" name="__codelineno-105-5" href="#__codelineno-105-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="p">(</span><span class="mi">1</span><span class="o">..</span><span class="n">nums</span><span class="p">.</span><span class="n">len</span><span class="p">()).</span><span class="n">rev</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-105-6" name="__codelineno-105-6" href="#__codelineno-105-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-105-7" name="__codelineno-105-7" href="#__codelineno-105-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">i</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-105-8" name="__codelineno-105-8" href="#__codelineno-105-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-105-9" name="__codelineno-105-9" href="#__codelineno-105-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-105-10" name="__codelineno-105-10" href="#__codelineno-105-10"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-105-11" name="__codelineno-105-11" href="#__codelineno-105-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-105-12" name="__codelineno-105-12" href="#__codelineno-105-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-105-13" name="__codelineno-105-13" href="#__codelineno-105-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-105-14" name="__codelineno-105-14" href="#__codelineno-105-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-105-15" name="__codelineno-105-15" href="#__codelineno-105-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-105-16" name="__codelineno-105-16" href="#__codelineno-105-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-105-17" name="__codelineno-105-17" href="#__codelineno-105-17"></a><span class="w"> </span><span class="n">count</span>
<a id="__codelineno-105-18" name="__codelineno-105-18" href="#__codelineno-105-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-106-1" name="__codelineno-106-1" href="#__codelineno-106-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span>
<a id="__codelineno-106-2" name="__codelineno-106-2" href="#__codelineno-106-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-106-3" name="__codelineno-106-3" href="#__codelineno-106-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-106-4" name="__codelineno-106-4" href="#__codelineno-106-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-106-5" name="__codelineno-106-5" href="#__codelineno-106-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-106-6" name="__codelineno-106-6" href="#__codelineno-106-6"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端</span>
<a id="__codelineno-106-7" name="__codelineno-106-7" href="#__codelineno-106-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-106-8" name="__codelineno-106-8" href="#__codelineno-106-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-106-9" name="__codelineno-106-9" href="#__codelineno-106-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-106-10" name="__codelineno-106-10" href="#__codelineno-106-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-106-11" name="__codelineno-106-11" href="#__codelineno-106-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-106-12" name="__codelineno-106-12" href="#__codelineno-106-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-106-13" name="__codelineno-106-13" href="#__codelineno-106-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-106-14" name="__codelineno-106-14" href="#__codelineno-106-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-106-15" name="__codelineno-106-15" href="#__codelineno-106-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-106-16" name="__codelineno-106-16" href="#__codelineno-106-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-106-17" name="__codelineno-106-17" href="#__codelineno-106-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-106-18" name="__codelineno-106-18" href="#__codelineno-106-18"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-107-1" name="__codelineno-107-1" href="#__codelineno-107-1"></a><span class="c1">// 平方阶(冒泡排序)</span>
<a id="__codelineno-107-2" name="__codelineno-107-2" href="#__codelineno-107-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">bubbleSort</span><span class="p">(</span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-107-3" name="__codelineno-107-3" href="#__codelineno-107-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器 </span>
<a id="__codelineno-107-4" name="__codelineno-107-4" href="#__codelineno-107-4"></a><span class="w"> </span><span class="c1">// 外循环:未排序区间为 [0, i]</span>
<a id="__codelineno-107-5" name="__codelineno-107-5" href="#__codelineno-107-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">@as</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="n">nums</span><span class="p">.</span><span class="n">len</span><span class="p">))</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-107-6" name="__codelineno-107-6" href="#__codelineno-107-6"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">-=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-107-7" name="__codelineno-107-7" href="#__codelineno-107-7"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">j</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-107-8" name="__codelineno-107-8" href="#__codelineno-107-8"></a><span class="w"> </span><span class="c1">// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 </span>
<a id="__codelineno-107-9" name="__codelineno-107-9" href="#__codelineno-107-9"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-107-10" name="__codelineno-107-10" href="#__codelineno-107-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-107-11" name="__codelineno-107-11" href="#__codelineno-107-11"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-107-12" name="__codelineno-107-12" href="#__codelineno-107-12"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-107-13" name="__codelineno-107-13" href="#__codelineno-107-13"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
<a id="__codelineno-107-14" name="__codelineno-107-14" href="#__codelineno-107-14"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<a id="__codelineno-107-15" name="__codelineno-107-15" href="#__codelineno-107-15"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-107-16" name="__codelineno-107-16" href="#__codelineno-107-16"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-107-17" name="__codelineno-107-17" href="#__codelineno-107-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-107-18" name="__codelineno-107-18" href="#__codelineno-107-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-107-19" name="__codelineno-107-19" href="#__codelineno-107-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-107-20" name="__codelineno-107-20" href="#__codelineno-107-20"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<h3 id="4-o2n">4. &nbsp; 指数阶 <span class="arithmatex">\(O(2^n)\)</span><a class="headerlink" href="#4-o2n" title="Permanent link">&para;</a></h3>
<p>生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 <span class="arithmatex">\(1\)</span> 个细胞,分裂一轮后变为 <span class="arithmatex">\(2\)</span> 个,分裂两轮后变为 <span class="arithmatex">\(4\)</span> 个,以此类推,分裂 <span class="arithmatex">\(n\)</span> 轮后有 <span class="arithmatex">\(2^n\)</span> 个细胞。</p>
<p>图 2-11 和以下代码模拟了细胞分裂的过程,时间复杂度为 <span class="arithmatex">\(O(2^n)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="10:12"><input checked="checked" id="__tabbed_10_1" name="__tabbed_10" type="radio" /><input id="__tabbed_10_2" name="__tabbed_10" type="radio" /><input id="__tabbed_10_3" name="__tabbed_10" type="radio" /><input id="__tabbed_10_4" name="__tabbed_10" type="radio" /><input id="__tabbed_10_5" name="__tabbed_10" type="radio" /><input id="__tabbed_10_6" name="__tabbed_10" type="radio" /><input id="__tabbed_10_7" name="__tabbed_10" type="radio" /><input id="__tabbed_10_8" name="__tabbed_10" type="radio" /><input id="__tabbed_10_9" name="__tabbed_10" type="radio" /><input id="__tabbed_10_10" name="__tabbed_10" type="radio" /><input id="__tabbed_10_11" name="__tabbed_10" type="radio" /><input id="__tabbed_10_12" name="__tabbed_10" type="radio" /><div class="tabbed-labels"><label for="__tabbed_10_1">Python</label><label for="__tabbed_10_2">C++</label><label for="__tabbed_10_3">Java</label><label for="__tabbed_10_4">C#</label><label for="__tabbed_10_5">Go</label><label for="__tabbed_10_6">Swift</label><label for="__tabbed_10_7">JS</label><label for="__tabbed_10_8">TS</label><label for="__tabbed_10_9">Dart</label><label for="__tabbed_10_10">Rust</label><label for="__tabbed_10_11">C</label><label for="__tabbed_10_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-108-1" name="__codelineno-108-1" href="#__codelineno-108-1"></a><span class="k">def</span> <span class="nf">exponential</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-108-2" name="__codelineno-108-2" href="#__codelineno-108-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;指数阶(循环实现)&quot;&quot;&quot;</span>
<a id="__codelineno-108-3" name="__codelineno-108-3" href="#__codelineno-108-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-108-4" name="__codelineno-108-4" href="#__codelineno-108-4"></a> <span class="n">base</span> <span class="o">=</span> <span class="mi">1</span>
<a id="__codelineno-108-5" name="__codelineno-108-5" href="#__codelineno-108-5"></a> <span class="c1"># 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-108-6" name="__codelineno-108-6" href="#__codelineno-108-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-108-7" name="__codelineno-108-7" href="#__codelineno-108-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">base</span><span class="p">):</span>
<a id="__codelineno-108-8" name="__codelineno-108-8" href="#__codelineno-108-8"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-108-9" name="__codelineno-108-9" href="#__codelineno-108-9"></a> <span class="n">base</span> <span class="o">*=</span> <span class="mi">2</span>
<a id="__codelineno-108-10" name="__codelineno-108-10" href="#__codelineno-108-10"></a> <span class="c1"># count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-108-11" name="__codelineno-108-11" href="#__codelineno-108-11"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-109-1" name="__codelineno-109-1" href="#__codelineno-109-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-109-2" name="__codelineno-109-2" href="#__codelineno-109-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-109-3" name="__codelineno-109-3" href="#__codelineno-109-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-109-4" name="__codelineno-109-4" href="#__codelineno-109-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-109-5" name="__codelineno-109-5" href="#__codelineno-109-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-109-6" name="__codelineno-109-6" href="#__codelineno-109-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-109-7" name="__codelineno-109-7" href="#__codelineno-109-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-109-8" name="__codelineno-109-8" href="#__codelineno-109-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-109-9" name="__codelineno-109-9" href="#__codelineno-109-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-109-10" name="__codelineno-109-10" href="#__codelineno-109-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-109-11" name="__codelineno-109-11" href="#__codelineno-109-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-109-12" name="__codelineno-109-12" href="#__codelineno-109-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-109-13" name="__codelineno-109-13" href="#__codelineno-109-13"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-110-1" name="__codelineno-110-1" href="#__codelineno-110-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-110-2" name="__codelineno-110-2" href="#__codelineno-110-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-110-3" name="__codelineno-110-3" href="#__codelineno-110-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-110-4" name="__codelineno-110-4" href="#__codelineno-110-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-110-5" name="__codelineno-110-5" href="#__codelineno-110-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-110-6" name="__codelineno-110-6" href="#__codelineno-110-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-110-7" name="__codelineno-110-7" href="#__codelineno-110-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-110-8" name="__codelineno-110-8" href="#__codelineno-110-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-110-9" name="__codelineno-110-9" href="#__codelineno-110-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-110-10" name="__codelineno-110-10" href="#__codelineno-110-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-110-11" name="__codelineno-110-11" href="#__codelineno-110-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-110-12" name="__codelineno-110-12" href="#__codelineno-110-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-110-13" name="__codelineno-110-13" href="#__codelineno-110-13"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-111-1" name="__codelineno-111-1" href="#__codelineno-111-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-111-2" name="__codelineno-111-2" href="#__codelineno-111-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-111-3" name="__codelineno-111-3" href="#__codelineno-111-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-111-4" name="__codelineno-111-4" href="#__codelineno-111-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-111-5" name="__codelineno-111-5" href="#__codelineno-111-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-111-6" name="__codelineno-111-6" href="#__codelineno-111-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">bas</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-111-7" name="__codelineno-111-7" href="#__codelineno-111-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-111-8" name="__codelineno-111-8" href="#__codelineno-111-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-111-9" name="__codelineno-111-9" href="#__codelineno-111-9"></a><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
<a id="__codelineno-111-10" name="__codelineno-111-10" href="#__codelineno-111-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-111-11" name="__codelineno-111-11" href="#__codelineno-111-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-111-12" name="__codelineno-111-12" href="#__codelineno-111-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-111-13" name="__codelineno-111-13" href="#__codelineno-111-13"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-112-1" name="__codelineno-112-1" href="#__codelineno-112-1"></a><span class="cm">/* 指数阶(循环实现)*/</span>
<a id="__codelineno-112-2" name="__codelineno-112-2" href="#__codelineno-112-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">exponential</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-112-3" name="__codelineno-112-3" href="#__codelineno-112-3"></a><span class="w"> </span><span class="nx">count</span><span class="p">,</span><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-112-4" name="__codelineno-112-4" href="#__codelineno-112-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-112-5" name="__codelineno-112-5" href="#__codelineno-112-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-112-6" name="__codelineno-112-6" href="#__codelineno-112-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">base</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-112-7" name="__codelineno-112-7" href="#__codelineno-112-7"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-112-8" name="__codelineno-112-8" href="#__codelineno-112-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-112-9" name="__codelineno-112-9" href="#__codelineno-112-9"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span>
<a id="__codelineno-112-10" name="__codelineno-112-10" href="#__codelineno-112-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-112-11" name="__codelineno-112-11" href="#__codelineno-112-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-112-12" name="__codelineno-112-12" href="#__codelineno-112-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-112-13" name="__codelineno-112-13" href="#__codelineno-112-13"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-113-1" name="__codelineno-113-1" href="#__codelineno-113-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-113-2" name="__codelineno-113-2" href="#__codelineno-113-2"></a><span class="kd">func</span> <span class="nf">exponential</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-113-3" name="__codelineno-113-3" href="#__codelineno-113-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-113-4" name="__codelineno-113-4" href="#__codelineno-113-4"></a> <span class="kd">var</span> <span class="nv">base</span> <span class="p">=</span> <span class="mi">1</span>
<a id="__codelineno-113-5" name="__codelineno-113-5" href="#__codelineno-113-5"></a> <span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-113-6" name="__codelineno-113-6" href="#__codelineno-113-6"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-113-7" name="__codelineno-113-7" href="#__codelineno-113-7"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">base</span> <span class="p">{</span>
<a id="__codelineno-113-8" name="__codelineno-113-8" href="#__codelineno-113-8"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-113-9" name="__codelineno-113-9" href="#__codelineno-113-9"></a> <span class="p">}</span>
<a id="__codelineno-113-10" name="__codelineno-113-10" href="#__codelineno-113-10"></a> <span class="n">base</span> <span class="o">*=</span> <span class="mi">2</span>
<a id="__codelineno-113-11" name="__codelineno-113-11" href="#__codelineno-113-11"></a> <span class="p">}</span>
<a id="__codelineno-113-12" name="__codelineno-113-12" href="#__codelineno-113-12"></a> <span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-113-13" name="__codelineno-113-13" href="#__codelineno-113-13"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-113-14" name="__codelineno-113-14" href="#__codelineno-113-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-114-1" name="__codelineno-114-1" href="#__codelineno-114-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-114-2" name="__codelineno-114-2" href="#__codelineno-114-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">exponential</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-114-3" name="__codelineno-114-3" href="#__codelineno-114-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">,</span>
<a id="__codelineno-114-4" name="__codelineno-114-4" href="#__codelineno-114-4"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-114-5" name="__codelineno-114-5" href="#__codelineno-114-5"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-114-6" name="__codelineno-114-6" href="#__codelineno-114-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-114-7" name="__codelineno-114-7" href="#__codelineno-114-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">base</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-114-8" name="__codelineno-114-8" href="#__codelineno-114-8"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-114-9" name="__codelineno-114-9" href="#__codelineno-114-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-114-10" name="__codelineno-114-10" href="#__codelineno-114-10"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-114-11" name="__codelineno-114-11" href="#__codelineno-114-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-114-12" name="__codelineno-114-12" href="#__codelineno-114-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-114-13" name="__codelineno-114-13" href="#__codelineno-114-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-114-14" name="__codelineno-114-14" href="#__codelineno-114-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-115-1" name="__codelineno-115-1" href="#__codelineno-115-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-115-2" name="__codelineno-115-2" href="#__codelineno-115-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">exponential</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-115-3" name="__codelineno-115-3" href="#__codelineno-115-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">,</span>
<a id="__codelineno-115-4" name="__codelineno-115-4" href="#__codelineno-115-4"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-115-5" name="__codelineno-115-5" href="#__codelineno-115-5"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-115-6" name="__codelineno-115-6" href="#__codelineno-115-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-115-7" name="__codelineno-115-7" href="#__codelineno-115-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">base</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-115-8" name="__codelineno-115-8" href="#__codelineno-115-8"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-115-9" name="__codelineno-115-9" href="#__codelineno-115-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-115-10" name="__codelineno-115-10" href="#__codelineno-115-10"></a><span class="w"> </span><span class="nx">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-115-11" name="__codelineno-115-11" href="#__codelineno-115-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-115-12" name="__codelineno-115-12" href="#__codelineno-115-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-115-13" name="__codelineno-115-13" href="#__codelineno-115-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-115-14" name="__codelineno-115-14" href="#__codelineno-115-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-116-1" name="__codelineno-116-1" href="#__codelineno-116-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-116-2" name="__codelineno-116-2" href="#__codelineno-116-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-116-3" name="__codelineno-116-3" href="#__codelineno-116-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-116-4" name="__codelineno-116-4" href="#__codelineno-116-4"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-116-5" name="__codelineno-116-5" href="#__codelineno-116-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-116-6" name="__codelineno-116-6" href="#__codelineno-116-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-116-7" name="__codelineno-116-7" href="#__codelineno-116-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-116-8" name="__codelineno-116-8" href="#__codelineno-116-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-116-9" name="__codelineno-116-9" href="#__codelineno-116-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
<a id="__codelineno-116-10" name="__codelineno-116-10" href="#__codelineno-116-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-116-11" name="__codelineno-116-11" href="#__codelineno-116-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-116-12" name="__codelineno-116-12" href="#__codelineno-116-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-116-13" name="__codelineno-116-13" href="#__codelineno-116-13"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-117-1" name="__codelineno-117-1" href="#__codelineno-117-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-117-2" name="__codelineno-117-2" href="#__codelineno-117-2"></a><span class="k">fn</span> <span class="nf">exponential</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-117-3" name="__codelineno-117-3" href="#__codelineno-117-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-117-4" name="__codelineno-117-4" href="#__codelineno-117-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-117-5" name="__codelineno-117-5" href="#__codelineno-117-5"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-117-6" name="__codelineno-117-6" href="#__codelineno-117-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-117-7" name="__codelineno-117-7" href="#__codelineno-117-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">base</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-117-8" name="__codelineno-117-8" href="#__codelineno-117-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-117-9" name="__codelineno-117-9" href="#__codelineno-117-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-117-10" name="__codelineno-117-10" href="#__codelineno-117-10"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-117-11" name="__codelineno-117-11" href="#__codelineno-117-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-117-12" name="__codelineno-117-12" href="#__codelineno-117-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-117-13" name="__codelineno-117-13" href="#__codelineno-117-13"></a><span class="w"> </span><span class="n">count</span>
<a id="__codelineno-117-14" name="__codelineno-117-14" href="#__codelineno-117-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-118-1" name="__codelineno-118-1" href="#__codelineno-118-1"></a><span class="cm">/* 指数阶(循环实现) */</span>
<a id="__codelineno-118-2" name="__codelineno-118-2" href="#__codelineno-118-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-118-3" name="__codelineno-118-3" href="#__codelineno-118-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-118-4" name="__codelineno-118-4" href="#__codelineno-118-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-118-5" name="__codelineno-118-5" href="#__codelineno-118-5"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-118-6" name="__codelineno-118-6" href="#__codelineno-118-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-118-7" name="__codelineno-118-7" href="#__codelineno-118-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">bas</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-118-8" name="__codelineno-118-8" href="#__codelineno-118-8"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-118-9" name="__codelineno-118-9" href="#__codelineno-118-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-118-10" name="__codelineno-118-10" href="#__codelineno-118-10"></a><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-118-11" name="__codelineno-118-11" href="#__codelineno-118-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-118-12" name="__codelineno-118-12" href="#__codelineno-118-12"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-118-13" name="__codelineno-118-13" href="#__codelineno-118-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-118-14" name="__codelineno-118-14" href="#__codelineno-118-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-119-1" name="__codelineno-119-1" href="#__codelineno-119-1"></a><span class="c1">// 指数阶(循环实现)</span>
<a id="__codelineno-119-2" name="__codelineno-119-2" href="#__codelineno-119-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">exponential</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-119-3" name="__codelineno-119-3" href="#__codelineno-119-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-119-4" name="__codelineno-119-4" href="#__codelineno-119-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">bas</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-119-5" name="__codelineno-119-5" href="#__codelineno-119-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-119-6" name="__codelineno-119-6" href="#__codelineno-119-6"></a><span class="w"> </span><span class="c1">// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-119-7" name="__codelineno-119-7" href="#__codelineno-119-7"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-119-8" name="__codelineno-119-8" href="#__codelineno-119-8"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">j</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-119-9" name="__codelineno-119-9" href="#__codelineno-119-9"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">bas</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-119-10" name="__codelineno-119-10" href="#__codelineno-119-10"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-119-11" name="__codelineno-119-11" href="#__codelineno-119-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-119-12" name="__codelineno-119-12" href="#__codelineno-119-12"></a><span class="w"> </span><span class="n">bas</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-119-13" name="__codelineno-119-13" href="#__codelineno-119-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-119-14" name="__codelineno-119-14" href="#__codelineno-119-14"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-119-15" name="__codelineno-119-15" href="#__codelineno-119-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-119-16" name="__codelineno-119-16" href="#__codelineno-119-16"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_exponential.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="指数阶的时间复杂度" class="animation-figure" src="../time_complexity.assets/time_complexity_exponential.png" /></a></p>
<p align="center"> 图 2-11 &nbsp; 指数阶的时间复杂度 </p>
<p>在实际算法中,指数阶常出现于递归函数中。例如在以下代码中,其递归地一分为二,经过 <span class="arithmatex">\(n\)</span> 次分裂后停止:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="11:12"><input checked="checked" id="__tabbed_11_1" name="__tabbed_11" type="radio" /><input id="__tabbed_11_2" name="__tabbed_11" type="radio" /><input id="__tabbed_11_3" name="__tabbed_11" type="radio" /><input id="__tabbed_11_4" name="__tabbed_11" type="radio" /><input id="__tabbed_11_5" name="__tabbed_11" type="radio" /><input id="__tabbed_11_6" name="__tabbed_11" type="radio" /><input id="__tabbed_11_7" name="__tabbed_11" type="radio" /><input id="__tabbed_11_8" name="__tabbed_11" type="radio" /><input id="__tabbed_11_9" name="__tabbed_11" type="radio" /><input id="__tabbed_11_10" name="__tabbed_11" type="radio" /><input id="__tabbed_11_11" name="__tabbed_11" type="radio" /><input id="__tabbed_11_12" name="__tabbed_11" type="radio" /><div class="tabbed-labels"><label for="__tabbed_11_1">Python</label><label for="__tabbed_11_2">C++</label><label for="__tabbed_11_3">Java</label><label for="__tabbed_11_4">C#</label><label for="__tabbed_11_5">Go</label><label for="__tabbed_11_6">Swift</label><label for="__tabbed_11_7">JS</label><label for="__tabbed_11_8">TS</label><label for="__tabbed_11_9">Dart</label><label for="__tabbed_11_10">Rust</label><label for="__tabbed_11_11">C</label><label for="__tabbed_11_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-120-1" name="__codelineno-120-1" href="#__codelineno-120-1"></a><span class="k">def</span> <span class="nf">exp_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-120-2" name="__codelineno-120-2" href="#__codelineno-120-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;指数阶(递归实现)&quot;&quot;&quot;</span>
<a id="__codelineno-120-3" name="__codelineno-120-3" href="#__codelineno-120-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-120-4" name="__codelineno-120-4" href="#__codelineno-120-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-120-5" name="__codelineno-120-5" href="#__codelineno-120-5"></a> <span class="k">return</span> <span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-121-1" name="__codelineno-121-1" href="#__codelineno-121-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-121-2" name="__codelineno-121-2" href="#__codelineno-121-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-121-3" name="__codelineno-121-3" href="#__codelineno-121-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-121-4" name="__codelineno-121-4" href="#__codelineno-121-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-121-5" name="__codelineno-121-5" href="#__codelineno-121-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-121-6" name="__codelineno-121-6" href="#__codelineno-121-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-122-1" name="__codelineno-122-1" href="#__codelineno-122-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-122-2" name="__codelineno-122-2" href="#__codelineno-122-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-122-3" name="__codelineno-122-3" href="#__codelineno-122-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-122-4" name="__codelineno-122-4" href="#__codelineno-122-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-122-5" name="__codelineno-122-5" href="#__codelineno-122-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-122-6" name="__codelineno-122-6" href="#__codelineno-122-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-123-1" name="__codelineno-123-1" href="#__codelineno-123-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-123-2" name="__codelineno-123-2" href="#__codelineno-123-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">ExpRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-123-3" name="__codelineno-123-3" href="#__codelineno-123-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-123-4" name="__codelineno-123-4" href="#__codelineno-123-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">ExpRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">ExpRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-123-5" name="__codelineno-123-5" href="#__codelineno-123-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-124-1" name="__codelineno-124-1" href="#__codelineno-124-1"></a><span class="cm">/* 指数阶(递归实现)*/</span>
<a id="__codelineno-124-2" name="__codelineno-124-2" href="#__codelineno-124-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-124-3" name="__codelineno-124-3" href="#__codelineno-124-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-124-4" name="__codelineno-124-4" href="#__codelineno-124-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-124-5" name="__codelineno-124-5" href="#__codelineno-124-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-124-6" name="__codelineno-124-6" href="#__codelineno-124-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-124-7" name="__codelineno-124-7" href="#__codelineno-124-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-125-1" name="__codelineno-125-1" href="#__codelineno-125-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-125-2" name="__codelineno-125-2" href="#__codelineno-125-2"></a><span class="kd">func</span> <span class="nf">expRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-125-3" name="__codelineno-125-3" href="#__codelineno-125-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-125-4" name="__codelineno-125-4" href="#__codelineno-125-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-125-5" name="__codelineno-125-5" href="#__codelineno-125-5"></a> <span class="p">}</span>
<a id="__codelineno-125-6" name="__codelineno-125-6" href="#__codelineno-125-6"></a> <span class="k">return</span> <span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
<a id="__codelineno-125-7" name="__codelineno-125-7" href="#__codelineno-125-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-126-1" name="__codelineno-126-1" href="#__codelineno-126-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-126-2" name="__codelineno-126-2" href="#__codelineno-126-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-126-3" name="__codelineno-126-3" href="#__codelineno-126-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-126-4" name="__codelineno-126-4" href="#__codelineno-126-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-126-5" name="__codelineno-126-5" href="#__codelineno-126-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-127-1" name="__codelineno-127-1" href="#__codelineno-127-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-127-2" name="__codelineno-127-2" href="#__codelineno-127-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-127-3" name="__codelineno-127-3" href="#__codelineno-127-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-127-4" name="__codelineno-127-4" href="#__codelineno-127-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">expRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-127-5" name="__codelineno-127-5" href="#__codelineno-127-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-128-1" name="__codelineno-128-1" href="#__codelineno-128-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-128-2" name="__codelineno-128-2" href="#__codelineno-128-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-128-3" name="__codelineno-128-3" href="#__codelineno-128-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-128-4" name="__codelineno-128-4" href="#__codelineno-128-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-128-5" name="__codelineno-128-5" href="#__codelineno-128-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-129-1" name="__codelineno-129-1" href="#__codelineno-129-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-129-2" name="__codelineno-129-2" href="#__codelineno-129-2"></a><span class="k">fn</span> <span class="nf">exp_recur</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-129-3" name="__codelineno-129-3" href="#__codelineno-129-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-129-4" name="__codelineno-129-4" href="#__codelineno-129-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-129-5" name="__codelineno-129-5" href="#__codelineno-129-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-129-6" name="__codelineno-129-6" href="#__codelineno-129-6"></a><span class="w"> </span><span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-129-7" name="__codelineno-129-7" href="#__codelineno-129-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-130-1" name="__codelineno-130-1" href="#__codelineno-130-1"></a><span class="cm">/* 指数阶(递归实现) */</span>
<a id="__codelineno-130-2" name="__codelineno-130-2" href="#__codelineno-130-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-130-3" name="__codelineno-130-3" href="#__codelineno-130-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-130-4" name="__codelineno-130-4" href="#__codelineno-130-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-130-5" name="__codelineno-130-5" href="#__codelineno-130-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-130-6" name="__codelineno-130-6" href="#__codelineno-130-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-131-1" name="__codelineno-131-1" href="#__codelineno-131-1"></a><span class="c1">// 指数阶(递归实现)</span>
<a id="__codelineno-131-2" name="__codelineno-131-2" href="#__codelineno-131-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-131-3" name="__codelineno-131-3" href="#__codelineno-131-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-131-4" name="__codelineno-131-4" href="#__codelineno-131-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-131-5" name="__codelineno-131-5" href="#__codelineno-131-5"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心等算法来解决。</p>
<h3 id="5-olog-n">5. &nbsp; 对数阶 <span class="arithmatex">\(O(\log n)\)</span><a class="headerlink" href="#5-olog-n" title="Permanent link">&para;</a></h3>
<p>与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 <span class="arithmatex">\(n\)</span> ,由于每轮缩减到一半,因此循环次数是 <span class="arithmatex">\(\log_2 n\)</span> ,即 <span class="arithmatex">\(2^n\)</span> 的反函数。</p>
<p>图 2-12 和以下代码模拟了“每轮缩减到一半”的过程,时间复杂度为 <span class="arithmatex">\(O(\log_2 n)\)</span> ,简记为 <span class="arithmatex">\(O(\log n)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="12:12"><input checked="checked" id="__tabbed_12_1" name="__tabbed_12" type="radio" /><input id="__tabbed_12_2" name="__tabbed_12" type="radio" /><input id="__tabbed_12_3" name="__tabbed_12" type="radio" /><input id="__tabbed_12_4" name="__tabbed_12" type="radio" /><input id="__tabbed_12_5" name="__tabbed_12" type="radio" /><input id="__tabbed_12_6" name="__tabbed_12" type="radio" /><input id="__tabbed_12_7" name="__tabbed_12" type="radio" /><input id="__tabbed_12_8" name="__tabbed_12" type="radio" /><input id="__tabbed_12_9" name="__tabbed_12" type="radio" /><input id="__tabbed_12_10" name="__tabbed_12" type="radio" /><input id="__tabbed_12_11" name="__tabbed_12" type="radio" /><input id="__tabbed_12_12" name="__tabbed_12" type="radio" /><div class="tabbed-labels"><label for="__tabbed_12_1">Python</label><label for="__tabbed_12_2">C++</label><label for="__tabbed_12_3">Java</label><label for="__tabbed_12_4">C#</label><label for="__tabbed_12_5">Go</label><label for="__tabbed_12_6">Swift</label><label for="__tabbed_12_7">JS</label><label for="__tabbed_12_8">TS</label><label for="__tabbed_12_9">Dart</label><label for="__tabbed_12_10">Rust</label><label for="__tabbed_12_11">C</label><label for="__tabbed_12_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-132-1" name="__codelineno-132-1" href="#__codelineno-132-1"></a><span class="k">def</span> <span class="nf">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-132-2" name="__codelineno-132-2" href="#__codelineno-132-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;对数阶(循环实现)&quot;&quot;&quot;</span>
<a id="__codelineno-132-3" name="__codelineno-132-3" href="#__codelineno-132-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-132-4" name="__codelineno-132-4" href="#__codelineno-132-4"></a> <span class="k">while</span> <span class="n">n</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-132-5" name="__codelineno-132-5" href="#__codelineno-132-5"></a> <span class="n">n</span> <span class="o">=</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span>
<a id="__codelineno-132-6" name="__codelineno-132-6" href="#__codelineno-132-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-132-7" name="__codelineno-132-7" href="#__codelineno-132-7"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-133-1" name="__codelineno-133-1" href="#__codelineno-133-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-133-2" name="__codelineno-133-2" href="#__codelineno-133-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-133-3" name="__codelineno-133-3" href="#__codelineno-133-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-133-4" name="__codelineno-133-4" href="#__codelineno-133-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-133-5" name="__codelineno-133-5" href="#__codelineno-133-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-133-6" name="__codelineno-133-6" href="#__codelineno-133-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-133-7" name="__codelineno-133-7" href="#__codelineno-133-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-133-8" name="__codelineno-133-8" href="#__codelineno-133-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-133-9" name="__codelineno-133-9" href="#__codelineno-133-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-134-1" name="__codelineno-134-1" href="#__codelineno-134-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-134-2" name="__codelineno-134-2" href="#__codelineno-134-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-134-3" name="__codelineno-134-3" href="#__codelineno-134-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-134-4" name="__codelineno-134-4" href="#__codelineno-134-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-134-5" name="__codelineno-134-5" href="#__codelineno-134-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-134-6" name="__codelineno-134-6" href="#__codelineno-134-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-134-7" name="__codelineno-134-7" href="#__codelineno-134-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-134-8" name="__codelineno-134-8" href="#__codelineno-134-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-134-9" name="__codelineno-134-9" href="#__codelineno-134-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-135-1" name="__codelineno-135-1" href="#__codelineno-135-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-135-2" name="__codelineno-135-2" href="#__codelineno-135-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">Logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-135-3" name="__codelineno-135-3" href="#__codelineno-135-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-135-4" name="__codelineno-135-4" href="#__codelineno-135-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-135-5" name="__codelineno-135-5" href="#__codelineno-135-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
<a id="__codelineno-135-6" name="__codelineno-135-6" href="#__codelineno-135-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-135-7" name="__codelineno-135-7" href="#__codelineno-135-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-135-8" name="__codelineno-135-8" href="#__codelineno-135-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-135-9" name="__codelineno-135-9" href="#__codelineno-135-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-136-1" name="__codelineno-136-1" href="#__codelineno-136-1"></a><span class="cm">/* 对数阶(循环实现)*/</span>
<a id="__codelineno-136-2" name="__codelineno-136-2" href="#__codelineno-136-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">logarithmic</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">float64</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-136-3" name="__codelineno-136-3" href="#__codelineno-136-3"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-136-4" name="__codelineno-136-4" href="#__codelineno-136-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-136-5" name="__codelineno-136-5" href="#__codelineno-136-5"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span>
<a id="__codelineno-136-6" name="__codelineno-136-6" href="#__codelineno-136-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-136-7" name="__codelineno-136-7" href="#__codelineno-136-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-136-8" name="__codelineno-136-8" href="#__codelineno-136-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-136-9" name="__codelineno-136-9" href="#__codelineno-136-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-137-1" name="__codelineno-137-1" href="#__codelineno-137-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-137-2" name="__codelineno-137-2" href="#__codelineno-137-2"></a><span class="kd">func</span> <span class="nf">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Double</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-137-3" name="__codelineno-137-3" href="#__codelineno-137-3"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-137-4" name="__codelineno-137-4" href="#__codelineno-137-4"></a> <span class="kd">var</span> <span class="nv">n</span> <span class="p">=</span> <span class="n">n</span>
<a id="__codelineno-137-5" name="__codelineno-137-5" href="#__codelineno-137-5"></a> <span class="k">while</span> <span class="n">n</span> <span class="o">&gt;</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-137-6" name="__codelineno-137-6" href="#__codelineno-137-6"></a> <span class="n">n</span> <span class="p">=</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span>
<a id="__codelineno-137-7" name="__codelineno-137-7" href="#__codelineno-137-7"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-137-8" name="__codelineno-137-8" href="#__codelineno-137-8"></a> <span class="p">}</span>
<a id="__codelineno-137-9" name="__codelineno-137-9" href="#__codelineno-137-9"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-137-10" name="__codelineno-137-10" href="#__codelineno-137-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-138-1" name="__codelineno-138-1" href="#__codelineno-138-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-138-2" name="__codelineno-138-2" href="#__codelineno-138-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logarithmic</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-138-3" name="__codelineno-138-3" href="#__codelineno-138-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-138-4" name="__codelineno-138-4" href="#__codelineno-138-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-138-5" name="__codelineno-138-5" href="#__codelineno-138-5"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-138-6" name="__codelineno-138-6" href="#__codelineno-138-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-138-7" name="__codelineno-138-7" href="#__codelineno-138-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-138-8" name="__codelineno-138-8" href="#__codelineno-138-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-138-9" name="__codelineno-138-9" href="#__codelineno-138-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-139-1" name="__codelineno-139-1" href="#__codelineno-139-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-139-2" name="__codelineno-139-2" href="#__codelineno-139-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logarithmic</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-139-3" name="__codelineno-139-3" href="#__codelineno-139-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-139-4" name="__codelineno-139-4" href="#__codelineno-139-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-139-5" name="__codelineno-139-5" href="#__codelineno-139-5"></a><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-139-6" name="__codelineno-139-6" href="#__codelineno-139-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-139-7" name="__codelineno-139-7" href="#__codelineno-139-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-139-8" name="__codelineno-139-8" href="#__codelineno-139-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-139-9" name="__codelineno-139-9" href="#__codelineno-139-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-140-1" name="__codelineno-140-1" href="#__codelineno-140-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-140-2" name="__codelineno-140-2" href="#__codelineno-140-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">logarithmic</span><span class="p">(</span><span class="kt">num</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-140-3" name="__codelineno-140-3" href="#__codelineno-140-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-140-4" name="__codelineno-140-4" href="#__codelineno-140-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-140-5" name="__codelineno-140-5" href="#__codelineno-140-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">;</span>
<a id="__codelineno-140-6" name="__codelineno-140-6" href="#__codelineno-140-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-140-7" name="__codelineno-140-7" href="#__codelineno-140-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-140-8" name="__codelineno-140-8" href="#__codelineno-140-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-140-9" name="__codelineno-140-9" href="#__codelineno-140-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-141-1" name="__codelineno-141-1" href="#__codelineno-141-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-141-2" name="__codelineno-141-2" href="#__codelineno-141-2"></a><span class="k">fn</span> <span class="nf">logarithmic</span><span class="p">(</span><span class="k">mut</span><span class="w"> </span><span class="n">n</span>: <span class="kt">f32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-141-3" name="__codelineno-141-3" href="#__codelineno-141-3"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-141-4" name="__codelineno-141-4" href="#__codelineno-141-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mf">1.0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-141-5" name="__codelineno-141-5" href="#__codelineno-141-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2.0</span><span class="p">;</span>
<a id="__codelineno-141-6" name="__codelineno-141-6" href="#__codelineno-141-6"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-141-7" name="__codelineno-141-7" href="#__codelineno-141-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-141-8" name="__codelineno-141-8" href="#__codelineno-141-8"></a><span class="w"> </span><span class="n">count</span>
<a id="__codelineno-141-9" name="__codelineno-141-9" href="#__codelineno-141-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-142-1" name="__codelineno-142-1" href="#__codelineno-142-1"></a><span class="cm">/* 对数阶(循环实现) */</span>
<a id="__codelineno-142-2" name="__codelineno-142-2" href="#__codelineno-142-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-142-3" name="__codelineno-142-3" href="#__codelineno-142-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-142-4" name="__codelineno-142-4" href="#__codelineno-142-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-142-5" name="__codelineno-142-5" href="#__codelineno-142-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-142-6" name="__codelineno-142-6" href="#__codelineno-142-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-142-7" name="__codelineno-142-7" href="#__codelineno-142-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-142-8" name="__codelineno-142-8" href="#__codelineno-142-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-142-9" name="__codelineno-142-9" href="#__codelineno-142-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-143-1" name="__codelineno-143-1" href="#__codelineno-143-1"></a><span class="c1">// 对数阶(循环实现)</span>
<a id="__codelineno-143-2" name="__codelineno-143-2" href="#__codelineno-143-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-143-3" name="__codelineno-143-3" href="#__codelineno-143-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-143-4" name="__codelineno-143-4" href="#__codelineno-143-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">n_var</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
<a id="__codelineno-143-5" name="__codelineno-143-5" href="#__codelineno-143-5"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n_var</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-143-6" name="__codelineno-143-6" href="#__codelineno-143-6"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-143-7" name="__codelineno-143-7" href="#__codelineno-143-7"></a><span class="w"> </span><span class="n">n_var</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n_var</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<a id="__codelineno-143-8" name="__codelineno-143-8" href="#__codelineno-143-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-143-9" name="__codelineno-143-9" href="#__codelineno-143-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-143-10" name="__codelineno-143-10" href="#__codelineno-143-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-143-11" name="__codelineno-143-11" href="#__codelineno-143-11"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_logarithmic.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="对数阶的时间复杂度" class="animation-figure" src="../time_complexity.assets/time_complexity_logarithmic.png" /></a></p>
<p align="center"> 图 2-12 &nbsp; 对数阶的时间复杂度 </p>
<p>与指数阶类似,对数阶也常出现于递归函数中。以下代码形成了一个高度为 <span class="arithmatex">\(\log_2 n\)</span> 的递归树:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="13:12"><input checked="checked" id="__tabbed_13_1" name="__tabbed_13" type="radio" /><input id="__tabbed_13_2" name="__tabbed_13" type="radio" /><input id="__tabbed_13_3" name="__tabbed_13" type="radio" /><input id="__tabbed_13_4" name="__tabbed_13" type="radio" /><input id="__tabbed_13_5" name="__tabbed_13" type="radio" /><input id="__tabbed_13_6" name="__tabbed_13" type="radio" /><input id="__tabbed_13_7" name="__tabbed_13" type="radio" /><input id="__tabbed_13_8" name="__tabbed_13" type="radio" /><input id="__tabbed_13_9" name="__tabbed_13" type="radio" /><input id="__tabbed_13_10" name="__tabbed_13" type="radio" /><input id="__tabbed_13_11" name="__tabbed_13" type="radio" /><input id="__tabbed_13_12" name="__tabbed_13" type="radio" /><div class="tabbed-labels"><label for="__tabbed_13_1">Python</label><label for="__tabbed_13_2">C++</label><label for="__tabbed_13_3">Java</label><label for="__tabbed_13_4">C#</label><label for="__tabbed_13_5">Go</label><label for="__tabbed_13_6">Swift</label><label for="__tabbed_13_7">JS</label><label for="__tabbed_13_8">TS</label><label for="__tabbed_13_9">Dart</label><label for="__tabbed_13_10">Rust</label><label for="__tabbed_13_11">C</label><label for="__tabbed_13_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-144-1" name="__codelineno-144-1" href="#__codelineno-144-1"></a><span class="k">def</span> <span class="nf">log_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-144-2" name="__codelineno-144-2" href="#__codelineno-144-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;对数阶(递归实现)&quot;&quot;&quot;</span>
<a id="__codelineno-144-3" name="__codelineno-144-3" href="#__codelineno-144-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-144-4" name="__codelineno-144-4" href="#__codelineno-144-4"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-144-5" name="__codelineno-144-5" href="#__codelineno-144-5"></a> <span class="k">return</span> <span class="n">log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-145-1" name="__codelineno-145-1" href="#__codelineno-145-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-145-2" name="__codelineno-145-2" href="#__codelineno-145-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-145-3" name="__codelineno-145-3" href="#__codelineno-145-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-145-4" name="__codelineno-145-4" href="#__codelineno-145-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-145-5" name="__codelineno-145-5" href="#__codelineno-145-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-145-6" name="__codelineno-145-6" href="#__codelineno-145-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-146-1" name="__codelineno-146-1" href="#__codelineno-146-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-146-2" name="__codelineno-146-2" href="#__codelineno-146-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-146-3" name="__codelineno-146-3" href="#__codelineno-146-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-146-4" name="__codelineno-146-4" href="#__codelineno-146-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-146-5" name="__codelineno-146-5" href="#__codelineno-146-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-146-6" name="__codelineno-146-6" href="#__codelineno-146-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-147-1" name="__codelineno-147-1" href="#__codelineno-147-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-147-2" name="__codelineno-147-2" href="#__codelineno-147-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">LogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-147-3" name="__codelineno-147-3" href="#__codelineno-147-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-147-4" name="__codelineno-147-4" href="#__codelineno-147-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nf">LogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-147-5" name="__codelineno-147-5" href="#__codelineno-147-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-148-1" name="__codelineno-148-1" href="#__codelineno-148-1"></a><span class="cm">/* 对数阶(递归实现)*/</span>
<a id="__codelineno-148-2" name="__codelineno-148-2" href="#__codelineno-148-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">float64</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-148-3" name="__codelineno-148-3" href="#__codelineno-148-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-148-4" name="__codelineno-148-4" href="#__codelineno-148-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-148-5" name="__codelineno-148-5" href="#__codelineno-148-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-148-6" name="__codelineno-148-6" href="#__codelineno-148-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-148-7" name="__codelineno-148-7" href="#__codelineno-148-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-149-1" name="__codelineno-149-1" href="#__codelineno-149-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-149-2" name="__codelineno-149-2" href="#__codelineno-149-2"></a><span class="kd">func</span> <span class="nf">logRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Double</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-149-3" name="__codelineno-149-3" href="#__codelineno-149-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-149-4" name="__codelineno-149-4" href="#__codelineno-149-4"></a> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-149-5" name="__codelineno-149-5" href="#__codelineno-149-5"></a> <span class="p">}</span>
<a id="__codelineno-149-6" name="__codelineno-149-6" href="#__codelineno-149-6"></a> <span class="k">return</span> <span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
<a id="__codelineno-149-7" name="__codelineno-149-7" href="#__codelineno-149-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-150-1" name="__codelineno-150-1" href="#__codelineno-150-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-150-2" name="__codelineno-150-2" href="#__codelineno-150-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-150-3" name="__codelineno-150-3" href="#__codelineno-150-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-150-4" name="__codelineno-150-4" href="#__codelineno-150-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-150-5" name="__codelineno-150-5" href="#__codelineno-150-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-151-1" name="__codelineno-151-1" href="#__codelineno-151-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-151-2" name="__codelineno-151-2" href="#__codelineno-151-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-151-3" name="__codelineno-151-3" href="#__codelineno-151-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-151-4" name="__codelineno-151-4" href="#__codelineno-151-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">logRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-151-5" name="__codelineno-151-5" href="#__codelineno-151-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-152-1" name="__codelineno-152-1" href="#__codelineno-152-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-152-2" name="__codelineno-152-2" href="#__codelineno-152-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="kt">num</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-152-3" name="__codelineno-152-3" href="#__codelineno-152-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-152-4" name="__codelineno-152-4" href="#__codelineno-152-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-152-5" name="__codelineno-152-5" href="#__codelineno-152-5"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-153-1" name="__codelineno-153-1" href="#__codelineno-153-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-153-2" name="__codelineno-153-2" href="#__codelineno-153-2"></a><span class="k">fn</span> <span class="nf">log_recur</span><span class="p">(</span><span class="n">n</span>: <span class="kt">f32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-153-3" name="__codelineno-153-3" href="#__codelineno-153-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1.0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-153-4" name="__codelineno-153-4" href="#__codelineno-153-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-153-5" name="__codelineno-153-5" href="#__codelineno-153-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-153-6" name="__codelineno-153-6" href="#__codelineno-153-6"></a><span class="w"> </span><span class="n">log_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2.0</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-153-7" name="__codelineno-153-7" href="#__codelineno-153-7"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-154-1" name="__codelineno-154-1" href="#__codelineno-154-1"></a><span class="cm">/* 对数阶(递归实现) */</span>
<a id="__codelineno-154-2" name="__codelineno-154-2" href="#__codelineno-154-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-154-3" name="__codelineno-154-3" href="#__codelineno-154-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-154-4" name="__codelineno-154-4" href="#__codelineno-154-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-154-5" name="__codelineno-154-5" href="#__codelineno-154-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-154-6" name="__codelineno-154-6" href="#__codelineno-154-6"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-155-1" name="__codelineno-155-1" href="#__codelineno-155-1"></a><span class="c1">// 对数阶(递归实现)</span>
<a id="__codelineno-155-2" name="__codelineno-155-2" href="#__codelineno-155-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-155-3" name="__codelineno-155-3" href="#__codelineno-155-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-155-4" name="__codelineno-155-4" href="#__codelineno-155-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-155-5" name="__codelineno-155-5" href="#__codelineno-155-5"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是仅次于常数阶的理想的时间复杂度。</p>
<div class="admonition tip">
<p class="admonition-title"><span class="arithmatex">\(O(\log n)\)</span> 的底数是多少?</p>
<p>准确来说,“一分为 <span class="arithmatex">\(m\)</span>”对应的时间复杂度是 <span class="arithmatex">\(O(\log_m n)\)</span> 。而通过对数换底公式,我们可以得到具有不同底数的、相等的时间复杂度:</p>
<div class="arithmatex">\[
O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n)
\]</div>
<p>也就是说,底数 <span class="arithmatex">\(m\)</span> 可以在不影响复杂度的前提下转换。因此我们通常会省略底数 <span class="arithmatex">\(m\)</span> ,将对数阶直接记为 <span class="arithmatex">\(O(\log n)\)</span></p>
</div>
<h3 id="6-on-log-n">6. &nbsp; 线性对数阶 <span class="arithmatex">\(O(n \log n)\)</span><a class="headerlink" href="#6-on-log-n" title="Permanent link">&para;</a></h3>
<p>线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 <span class="arithmatex">\(O(\log n)\)</span><span class="arithmatex">\(O(n)\)</span> 。相关代码如下:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="14:12"><input checked="checked" id="__tabbed_14_1" name="__tabbed_14" type="radio" /><input id="__tabbed_14_2" name="__tabbed_14" type="radio" /><input id="__tabbed_14_3" name="__tabbed_14" type="radio" /><input id="__tabbed_14_4" name="__tabbed_14" type="radio" /><input id="__tabbed_14_5" name="__tabbed_14" type="radio" /><input id="__tabbed_14_6" name="__tabbed_14" type="radio" /><input id="__tabbed_14_7" name="__tabbed_14" type="radio" /><input id="__tabbed_14_8" name="__tabbed_14" type="radio" /><input id="__tabbed_14_9" name="__tabbed_14" type="radio" /><input id="__tabbed_14_10" name="__tabbed_14" type="radio" /><input id="__tabbed_14_11" name="__tabbed_14" type="radio" /><input id="__tabbed_14_12" name="__tabbed_14" type="radio" /><div class="tabbed-labels"><label for="__tabbed_14_1">Python</label><label for="__tabbed_14_2">C++</label><label for="__tabbed_14_3">Java</label><label for="__tabbed_14_4">C#</label><label for="__tabbed_14_5">Go</label><label for="__tabbed_14_6">Swift</label><label for="__tabbed_14_7">JS</label><label for="__tabbed_14_8">TS</label><label for="__tabbed_14_9">Dart</label><label for="__tabbed_14_10">Rust</label><label for="__tabbed_14_11">C</label><label for="__tabbed_14_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-156-1" name="__codelineno-156-1" href="#__codelineno-156-1"></a><span class="k">def</span> <span class="nf">linear_log_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-156-2" name="__codelineno-156-2" href="#__codelineno-156-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;线性对数阶&quot;&quot;&quot;</span>
<a id="__codelineno-156-3" name="__codelineno-156-3" href="#__codelineno-156-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-156-4" name="__codelineno-156-4" href="#__codelineno-156-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-156-5" name="__codelineno-156-5" href="#__codelineno-156-5"></a> <span class="n">count</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-156-6" name="__codelineno-156-6" href="#__codelineno-156-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-156-7" name="__codelineno-156-7" href="#__codelineno-156-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-156-8" name="__codelineno-156-8" href="#__codelineno-156-8"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-157-1" name="__codelineno-157-1" href="#__codelineno-157-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-157-2" name="__codelineno-157-2" href="#__codelineno-157-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-157-3" name="__codelineno-157-3" href="#__codelineno-157-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-157-4" name="__codelineno-157-4" href="#__codelineno-157-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-157-5" name="__codelineno-157-5" href="#__codelineno-157-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-157-6" name="__codelineno-157-6" href="#__codelineno-157-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-157-7" name="__codelineno-157-7" href="#__codelineno-157-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-157-8" name="__codelineno-157-8" href="#__codelineno-157-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-157-9" name="__codelineno-157-9" href="#__codelineno-157-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-157-10" name="__codelineno-157-10" href="#__codelineno-157-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-158-1" name="__codelineno-158-1" href="#__codelineno-158-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-158-2" name="__codelineno-158-2" href="#__codelineno-158-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-158-3" name="__codelineno-158-3" href="#__codelineno-158-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-158-4" name="__codelineno-158-4" href="#__codelineno-158-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-158-5" name="__codelineno-158-5" href="#__codelineno-158-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-158-6" name="__codelineno-158-6" href="#__codelineno-158-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-158-7" name="__codelineno-158-7" href="#__codelineno-158-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-158-8" name="__codelineno-158-8" href="#__codelineno-158-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-158-9" name="__codelineno-158-9" href="#__codelineno-158-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-158-10" name="__codelineno-158-10" href="#__codelineno-158-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-159-1" name="__codelineno-159-1" href="#__codelineno-159-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-159-2" name="__codelineno-159-2" href="#__codelineno-159-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">LinearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-159-3" name="__codelineno-159-3" href="#__codelineno-159-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-159-4" name="__codelineno-159-4" href="#__codelineno-159-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">LinearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">LinearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">);</span>
<a id="__codelineno-159-5" name="__codelineno-159-5" href="#__codelineno-159-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-159-6" name="__codelineno-159-6" href="#__codelineno-159-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-159-7" name="__codelineno-159-7" href="#__codelineno-159-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-159-8" name="__codelineno-159-8" href="#__codelineno-159-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-159-9" name="__codelineno-159-9" href="#__codelineno-159-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-160-1" name="__codelineno-160-1" href="#__codelineno-160-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-160-2" name="__codelineno-160-2" href="#__codelineno-160-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">float64</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-160-3" name="__codelineno-160-3" href="#__codelineno-160-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-160-4" name="__codelineno-160-4" href="#__codelineno-160-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-160-5" name="__codelineno-160-5" href="#__codelineno-160-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-160-6" name="__codelineno-160-6" href="#__codelineno-160-6"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-160-7" name="__codelineno-160-7" href="#__codelineno-160-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mf">0.0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-160-8" name="__codelineno-160-8" href="#__codelineno-160-8"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span>
<a id="__codelineno-160-9" name="__codelineno-160-9" href="#__codelineno-160-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-160-10" name="__codelineno-160-10" href="#__codelineno-160-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-160-11" name="__codelineno-160-11" href="#__codelineno-160-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-161-1" name="__codelineno-161-1" href="#__codelineno-161-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-161-2" name="__codelineno-161-2" href="#__codelineno-161-2"></a><span class="kd">func</span> <span class="nf">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Double</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-161-3" name="__codelineno-161-3" href="#__codelineno-161-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-161-4" name="__codelineno-161-4" href="#__codelineno-161-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-161-5" name="__codelineno-161-5" href="#__codelineno-161-5"></a> <span class="p">}</span>
<a id="__codelineno-161-6" name="__codelineno-161-6" href="#__codelineno-161-6"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-161-7" name="__codelineno-161-7" href="#__codelineno-161-7"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="bp">stride</span><span class="p">(</span><span class="n">from</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">to</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">by</span><span class="p">:</span> <span class="mi">1</span><span class="p">)</span> <span class="p">{</span>
<a id="__codelineno-161-8" name="__codelineno-161-8" href="#__codelineno-161-8"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-161-9" name="__codelineno-161-9" href="#__codelineno-161-9"></a> <span class="p">}</span>
<a id="__codelineno-161-10" name="__codelineno-161-10" href="#__codelineno-161-10"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-161-11" name="__codelineno-161-11" href="#__codelineno-161-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-162-1" name="__codelineno-162-1" href="#__codelineno-162-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-162-2" name="__codelineno-162-2" href="#__codelineno-162-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-162-3" name="__codelineno-162-3" href="#__codelineno-162-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-162-4" name="__codelineno-162-4" href="#__codelineno-162-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">);</span>
<a id="__codelineno-162-5" name="__codelineno-162-5" href="#__codelineno-162-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-162-6" name="__codelineno-162-6" href="#__codelineno-162-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-162-7" name="__codelineno-162-7" href="#__codelineno-162-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-162-8" name="__codelineno-162-8" href="#__codelineno-162-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-162-9" name="__codelineno-162-9" href="#__codelineno-162-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-163-1" name="__codelineno-163-1" href="#__codelineno-163-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-163-2" name="__codelineno-163-2" href="#__codelineno-163-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-163-3" name="__codelineno-163-3" href="#__codelineno-163-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-163-4" name="__codelineno-163-4" href="#__codelineno-163-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">linearLogRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2</span><span class="p">);</span>
<a id="__codelineno-163-5" name="__codelineno-163-5" href="#__codelineno-163-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-163-6" name="__codelineno-163-6" href="#__codelineno-163-6"></a><span class="w"> </span><span class="nx">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-163-7" name="__codelineno-163-7" href="#__codelineno-163-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-163-8" name="__codelineno-163-8" href="#__codelineno-163-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-163-9" name="__codelineno-163-9" href="#__codelineno-163-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-164-1" name="__codelineno-164-1" href="#__codelineno-164-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-164-2" name="__codelineno-164-2" href="#__codelineno-164-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="kt">num</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-164-3" name="__codelineno-164-3" href="#__codelineno-164-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-164-4" name="__codelineno-164-4" href="#__codelineno-164-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="m">2</span><span class="p">);</span>
<a id="__codelineno-164-5" name="__codelineno-164-5" href="#__codelineno-164-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-164-6" name="__codelineno-164-6" href="#__codelineno-164-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-164-7" name="__codelineno-164-7" href="#__codelineno-164-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-164-8" name="__codelineno-164-8" href="#__codelineno-164-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-164-9" name="__codelineno-164-9" href="#__codelineno-164-9"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-165-1" name="__codelineno-165-1" href="#__codelineno-165-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-165-2" name="__codelineno-165-2" href="#__codelineno-165-2"></a><span class="k">fn</span> <span class="nf">linear_log_recur</span><span class="p">(</span><span class="n">n</span>: <span class="kt">f32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-165-3" name="__codelineno-165-3" href="#__codelineno-165-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mf">1.0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-165-4" name="__codelineno-165-4" href="#__codelineno-165-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-165-5" name="__codelineno-165-5" href="#__codelineno-165-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-165-6" name="__codelineno-165-6" href="#__codelineno-165-6"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2.0</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mf">2.0</span><span class="p">);</span>
<a id="__codelineno-165-7" name="__codelineno-165-7" href="#__codelineno-165-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-165-8" name="__codelineno-165-8" href="#__codelineno-165-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-165-9" name="__codelineno-165-9" href="#__codelineno-165-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-165-10" name="__codelineno-165-10" href="#__codelineno-165-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span>
<a id="__codelineno-165-11" name="__codelineno-165-11" href="#__codelineno-165-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-166-1" name="__codelineno-166-1" href="#__codelineno-166-1"></a><span class="cm">/* 线性对数阶 */</span>
<a id="__codelineno-166-2" name="__codelineno-166-2" href="#__codelineno-166-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-166-3" name="__codelineno-166-3" href="#__codelineno-166-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-166-4" name="__codelineno-166-4" href="#__codelineno-166-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-166-5" name="__codelineno-166-5" href="#__codelineno-166-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-166-6" name="__codelineno-166-6" href="#__codelineno-166-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-166-7" name="__codelineno-166-7" href="#__codelineno-166-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span>
<a id="__codelineno-166-8" name="__codelineno-166-8" href="#__codelineno-166-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-166-9" name="__codelineno-166-9" href="#__codelineno-166-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-166-10" name="__codelineno-166-10" href="#__codelineno-166-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-167-1" name="__codelineno-167-1" href="#__codelineno-167-1"></a><span class="c1">// 线性对数阶</span>
<a id="__codelineno-167-2" name="__codelineno-167-2" href="#__codelineno-167-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-167-3" name="__codelineno-167-3" href="#__codelineno-167-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-167-4" name="__codelineno-167-4" href="#__codelineno-167-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span>
<a id="__codelineno-167-5" name="__codelineno-167-5" href="#__codelineno-167-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">f32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-167-6" name="__codelineno-167-6" href="#__codelineno-167-6"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-167-7" name="__codelineno-167-7" href="#__codelineno-167-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-167-8" name="__codelineno-167-8" href="#__codelineno-167-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-167-9" name="__codelineno-167-9" href="#__codelineno-167-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-167-10" name="__codelineno-167-10" href="#__codelineno-167-10"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>图 2-13 展示了线性对数阶的生成方式。二叉树的每一层的操作总数都为 <span class="arithmatex">\(n\)</span> ,树共有 <span class="arithmatex">\(\log_2 n + 1\)</span> 层,因此时间复杂度为 <span class="arithmatex">\(O(n \log n)\)</span></p>
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_logarithmic_linear.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="线性对数阶的时间复杂度" class="animation-figure" src="../time_complexity.assets/time_complexity_logarithmic_linear.png" /></a></p>
<p align="center"> 图 2-13 &nbsp; 线性对数阶的时间复杂度 </p>
<p>主流排序算法的时间复杂度通常为 <span class="arithmatex">\(O(n \log n)\)</span> ,例如快速排序、归并排序、堆排序等。</p>
<h3 id="7-on">7. &nbsp; 阶乘阶 <span class="arithmatex">\(O(n!)\)</span><a class="headerlink" href="#7-on" title="Permanent link">&para;</a></h3>
<p>阶乘阶对应数学上的“全排列”问题。给定 <span class="arithmatex">\(n\)</span> 个互不重复的元素,求其所有可能的排列方案,方案数量为:</p>
<div class="arithmatex">\[
n! = n \times (n - 1) \times (n - 2) \times \dots \times 2 \times 1
\]</div>
<p>阶乘通常使用递归实现。如图 2-14 和以下代码所示,第一层分裂出 <span class="arithmatex">\(n\)</span> 个,第二层分裂出 <span class="arithmatex">\(n - 1\)</span> 个,以此类推,直至第 <span class="arithmatex">\(n\)</span> 层时停止分裂:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="15:12"><input checked="checked" id="__tabbed_15_1" name="__tabbed_15" type="radio" /><input id="__tabbed_15_2" name="__tabbed_15" type="radio" /><input id="__tabbed_15_3" name="__tabbed_15" type="radio" /><input id="__tabbed_15_4" name="__tabbed_15" type="radio" /><input id="__tabbed_15_5" name="__tabbed_15" type="radio" /><input id="__tabbed_15_6" name="__tabbed_15" type="radio" /><input id="__tabbed_15_7" name="__tabbed_15" type="radio" /><input id="__tabbed_15_8" name="__tabbed_15" type="radio" /><input id="__tabbed_15_9" name="__tabbed_15" type="radio" /><input id="__tabbed_15_10" name="__tabbed_15" type="radio" /><input id="__tabbed_15_11" name="__tabbed_15" type="radio" /><input id="__tabbed_15_12" name="__tabbed_15" type="radio" /><div class="tabbed-labels"><label for="__tabbed_15_1">Python</label><label for="__tabbed_15_2">C++</label><label for="__tabbed_15_3">Java</label><label for="__tabbed_15_4">C#</label><label for="__tabbed_15_5">Go</label><label for="__tabbed_15_6">Swift</label><label for="__tabbed_15_7">JS</label><label for="__tabbed_15_8">TS</label><label for="__tabbed_15_9">Dart</label><label for="__tabbed_15_10">Rust</label><label for="__tabbed_15_11">C</label><label for="__tabbed_15_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.py</span><pre><span></span><code><a id="__codelineno-168-1" name="__codelineno-168-1" href="#__codelineno-168-1"></a><span class="k">def</span> <span class="nf">factorial_recur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-168-2" name="__codelineno-168-2" href="#__codelineno-168-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;阶乘阶(递归实现)&quot;&quot;&quot;</span>
<a id="__codelineno-168-3" name="__codelineno-168-3" href="#__codelineno-168-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<a id="__codelineno-168-4" name="__codelineno-168-4" href="#__codelineno-168-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-168-5" name="__codelineno-168-5" href="#__codelineno-168-5"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-168-6" name="__codelineno-168-6" href="#__codelineno-168-6"></a> <span class="c1"># 从 1 个分裂出 n 个</span>
<a id="__codelineno-168-7" name="__codelineno-168-7" href="#__codelineno-168-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-168-8" name="__codelineno-168-8" href="#__codelineno-168-8"></a> <span class="n">count</span> <span class="o">+=</span> <span class="n">factorial_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-168-9" name="__codelineno-168-9" href="#__codelineno-168-9"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-169-1" name="__codelineno-169-1" href="#__codelineno-169-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-169-2" name="__codelineno-169-2" href="#__codelineno-169-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-169-3" name="__codelineno-169-3" href="#__codelineno-169-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-169-4" name="__codelineno-169-4" href="#__codelineno-169-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-169-5" name="__codelineno-169-5" href="#__codelineno-169-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-169-6" name="__codelineno-169-6" href="#__codelineno-169-6"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-169-7" name="__codelineno-169-7" href="#__codelineno-169-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-169-8" name="__codelineno-169-8" href="#__codelineno-169-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-169-9" name="__codelineno-169-9" href="#__codelineno-169-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-169-10" name="__codelineno-169-10" href="#__codelineno-169-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-169-11" name="__codelineno-169-11" href="#__codelineno-169-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.java</span><pre><span></span><code><a id="__codelineno-170-1" name="__codelineno-170-1" href="#__codelineno-170-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-170-2" name="__codelineno-170-2" href="#__codelineno-170-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-170-3" name="__codelineno-170-3" href="#__codelineno-170-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-170-4" name="__codelineno-170-4" href="#__codelineno-170-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-170-5" name="__codelineno-170-5" href="#__codelineno-170-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-170-6" name="__codelineno-170-6" href="#__codelineno-170-6"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-170-7" name="__codelineno-170-7" href="#__codelineno-170-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-170-8" name="__codelineno-170-8" href="#__codelineno-170-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-170-9" name="__codelineno-170-9" href="#__codelineno-170-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-170-10" name="__codelineno-170-10" href="#__codelineno-170-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-170-11" name="__codelineno-170-11" href="#__codelineno-170-11"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.cs</span><pre><span></span><code><a id="__codelineno-171-1" name="__codelineno-171-1" href="#__codelineno-171-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-171-2" name="__codelineno-171-2" href="#__codelineno-171-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">FactorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-171-3" name="__codelineno-171-3" href="#__codelineno-171-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-171-4" name="__codelineno-171-4" href="#__codelineno-171-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-171-5" name="__codelineno-171-5" href="#__codelineno-171-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-171-6" name="__codelineno-171-6" href="#__codelineno-171-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-171-7" name="__codelineno-171-7" href="#__codelineno-171-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">FactorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-171-8" name="__codelineno-171-8" href="#__codelineno-171-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-171-9" name="__codelineno-171-9" href="#__codelineno-171-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-171-10" name="__codelineno-171-10" href="#__codelineno-171-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.go</span><pre><span></span><code><a id="__codelineno-172-1" name="__codelineno-172-1" href="#__codelineno-172-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-172-2" name="__codelineno-172-2" href="#__codelineno-172-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-172-3" name="__codelineno-172-3" href="#__codelineno-172-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-172-4" name="__codelineno-172-4" href="#__codelineno-172-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-172-5" name="__codelineno-172-5" href="#__codelineno-172-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-172-6" name="__codelineno-172-6" href="#__codelineno-172-6"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span>
<a id="__codelineno-172-7" name="__codelineno-172-7" href="#__codelineno-172-7"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-172-8" name="__codelineno-172-8" href="#__codelineno-172-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-172-9" name="__codelineno-172-9" href="#__codelineno-172-9"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-172-10" name="__codelineno-172-10" href="#__codelineno-172-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-172-11" name="__codelineno-172-11" href="#__codelineno-172-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span>
<a id="__codelineno-172-12" name="__codelineno-172-12" href="#__codelineno-172-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.swift</span><pre><span></span><code><a id="__codelineno-173-1" name="__codelineno-173-1" href="#__codelineno-173-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-173-2" name="__codelineno-173-2" href="#__codelineno-173-2"></a><span class="kd">func</span> <span class="nf">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-173-3" name="__codelineno-173-3" href="#__codelineno-173-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="p">==</span> <span class="mi">0</span> <span class="p">{</span>
<a id="__codelineno-173-4" name="__codelineno-173-4" href="#__codelineno-173-4"></a> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-173-5" name="__codelineno-173-5" href="#__codelineno-173-5"></a> <span class="p">}</span>
<a id="__codelineno-173-6" name="__codelineno-173-6" href="#__codelineno-173-6"></a> <span class="kd">var</span> <span class="nv">count</span> <span class="p">=</span> <span class="mi">0</span>
<a id="__codelineno-173-7" name="__codelineno-173-7" href="#__codelineno-173-7"></a> <span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-173-8" name="__codelineno-173-8" href="#__codelineno-173-8"></a> <span class="k">for</span> <span class="kc">_</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-173-9" name="__codelineno-173-9" href="#__codelineno-173-9"></a> <span class="bp">count</span> <span class="o">+=</span> <span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-173-10" name="__codelineno-173-10" href="#__codelineno-173-10"></a> <span class="p">}</span>
<a id="__codelineno-173-11" name="__codelineno-173-11" href="#__codelineno-173-11"></a> <span class="k">return</span> <span class="bp">count</span>
<a id="__codelineno-173-12" name="__codelineno-173-12" href="#__codelineno-173-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.js</span><pre><span></span><code><a id="__codelineno-174-1" name="__codelineno-174-1" href="#__codelineno-174-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-174-2" name="__codelineno-174-2" href="#__codelineno-174-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-174-3" name="__codelineno-174-3" href="#__codelineno-174-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-174-4" name="__codelineno-174-4" href="#__codelineno-174-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-174-5" name="__codelineno-174-5" href="#__codelineno-174-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-174-6" name="__codelineno-174-6" href="#__codelineno-174-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-174-7" name="__codelineno-174-7" href="#__codelineno-174-7"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
<a id="__codelineno-174-8" name="__codelineno-174-8" href="#__codelineno-174-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-174-9" name="__codelineno-174-9" href="#__codelineno-174-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-174-10" name="__codelineno-174-10" href="#__codelineno-174-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.ts</span><pre><span></span><code><a id="__codelineno-175-1" name="__codelineno-175-1" href="#__codelineno-175-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-175-2" name="__codelineno-175-2" href="#__codelineno-175-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-175-3" name="__codelineno-175-3" href="#__codelineno-175-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-175-4" name="__codelineno-175-4" href="#__codelineno-175-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-175-5" name="__codelineno-175-5" href="#__codelineno-175-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-175-6" name="__codelineno-175-6" href="#__codelineno-175-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-175-7" name="__codelineno-175-7" href="#__codelineno-175-7"></a><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="nx">factorialRecur</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
<a id="__codelineno-175-8" name="__codelineno-175-8" href="#__codelineno-175-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-175-9" name="__codelineno-175-9" href="#__codelineno-175-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
<a id="__codelineno-175-10" name="__codelineno-175-10" href="#__codelineno-175-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.dart</span><pre><span></span><code><a id="__codelineno-176-1" name="__codelineno-176-1" href="#__codelineno-176-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-176-2" name="__codelineno-176-2" href="#__codelineno-176-2"></a><span class="kt">int</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-176-3" name="__codelineno-176-3" href="#__codelineno-176-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-176-4" name="__codelineno-176-4" href="#__codelineno-176-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span>
<a id="__codelineno-176-5" name="__codelineno-176-5" href="#__codelineno-176-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-176-6" name="__codelineno-176-6" href="#__codelineno-176-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-176-7" name="__codelineno-176-7" href="#__codelineno-176-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-176-8" name="__codelineno-176-8" href="#__codelineno-176-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-176-9" name="__codelineno-176-9" href="#__codelineno-176-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-176-10" name="__codelineno-176-10" href="#__codelineno-176-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.rs</span><pre><span></span><code><a id="__codelineno-177-1" name="__codelineno-177-1" href="#__codelineno-177-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-177-2" name="__codelineno-177-2" href="#__codelineno-177-2"></a><span class="k">fn</span> <span class="nf">factorial_recur</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="kt">i32</span> <span class="p">{</span>
<a id="__codelineno-177-3" name="__codelineno-177-3" href="#__codelineno-177-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-177-4" name="__codelineno-177-4" href="#__codelineno-177-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-177-5" name="__codelineno-177-5" href="#__codelineno-177-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-177-6" name="__codelineno-177-6" href="#__codelineno-177-6"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-177-7" name="__codelineno-177-7" href="#__codelineno-177-7"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-177-8" name="__codelineno-177-8" href="#__codelineno-177-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">_</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-177-9" name="__codelineno-177-9" href="#__codelineno-177-9"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorial_recur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-177-10" name="__codelineno-177-10" href="#__codelineno-177-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-177-11" name="__codelineno-177-11" href="#__codelineno-177-11"></a><span class="w"> </span><span class="n">count</span>
<a id="__codelineno-177-12" name="__codelineno-177-12" href="#__codelineno-177-12"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.c</span><pre><span></span><code><a id="__codelineno-178-1" name="__codelineno-178-1" href="#__codelineno-178-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span>
<a id="__codelineno-178-2" name="__codelineno-178-2" href="#__codelineno-178-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-178-3" name="__codelineno-178-3" href="#__codelineno-178-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-178-4" name="__codelineno-178-4" href="#__codelineno-178-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-178-5" name="__codelineno-178-5" href="#__codelineno-178-5"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-178-6" name="__codelineno-178-6" href="#__codelineno-178-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-178-7" name="__codelineno-178-7" href="#__codelineno-178-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-178-8" name="__codelineno-178-8" href="#__codelineno-178-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-178-9" name="__codelineno-178-9" href="#__codelineno-178-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-178-10" name="__codelineno-178-10" href="#__codelineno-178-10"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity.zig</span><pre><span></span><code><a id="__codelineno-179-1" name="__codelineno-179-1" href="#__codelineno-179-1"></a><span class="c1">// 阶乘阶(递归实现)</span>
<a id="__codelineno-179-2" name="__codelineno-179-2" href="#__codelineno-179-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-179-3" name="__codelineno-179-3" href="#__codelineno-179-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-179-4" name="__codelineno-179-4" href="#__codelineno-179-4"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">count</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-179-5" name="__codelineno-179-5" href="#__codelineno-179-5"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">i</span><span class="o">:</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-179-6" name="__codelineno-179-6" href="#__codelineno-179-6"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-179-7" name="__codelineno-179-7" href="#__codelineno-179-7"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-179-8" name="__codelineno-179-8" href="#__codelineno-179-8"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-179-9" name="__codelineno-179-9" href="#__codelineno-179-9"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-179-10" name="__codelineno-179-10" href="#__codelineno-179-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span>
<a id="__codelineno-179-11" name="__codelineno-179-11" href="#__codelineno-179-11"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p><a class="glightbox" href="../time_complexity.assets/time_complexity_factorial.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="阶乘阶的时间复杂度" class="animation-figure" src="../time_complexity.assets/time_complexity_factorial.png" /></a></p>
<p align="center"> 图 2-14 &nbsp; 阶乘阶的时间复杂度 </p>
<p>请注意,因为当 <span class="arithmatex">\(n \geq 4\)</span> 时恒有 <span class="arithmatex">\(n! &gt; 2^n\)</span> ,所以阶乘阶比指数阶增长得更快,在 <span class="arithmatex">\(n\)</span> 较大时也是不可接受的。</p>
<h2 id="235">2.3.5 &nbsp; 最差、最佳、平均时间复杂度<a class="headerlink" href="#235" title="Permanent link">&para;</a></h2>
<p><strong>算法的时间效率往往不是固定的,而是与输入数据的分布有关</strong>。假设输入一个长度为 <span class="arithmatex">\(n\)</span> 的数组 <code>nums</code> ,其中 <code>nums</code> 由从 <span class="arithmatex">\(1\)</span><span class="arithmatex">\(n\)</span> 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 <span class="arithmatex">\(1\)</span> 的索引。我们可以得出以下结论。</p>
<ul>
<li><code>nums = [?, ?, ..., 1]</code> ,即当末尾元素是 <span class="arithmatex">\(1\)</span> 时,需要完整遍历数组,<strong>达到最差时间复杂度 <span class="arithmatex">\(O(n)\)</span></strong></li>
<li><code>nums = [1, ?, ?, ...]</code> ,即当首个元素为 <span class="arithmatex">\(1\)</span> 时,无论数组多长都不需要继续遍历,<strong>达到最佳时间复杂度 <span class="arithmatex">\(\Omega(1)\)</span></strong></li>
</ul>
<p>“最差时间复杂度”对应函数渐近上界,使用大 <span class="arithmatex">\(O\)</span> 记号表示。相应地,“最佳时间复杂度”对应函数渐近下界,用 <span class="arithmatex">\(\Omega\)</span> 记号表示:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="16:12"><input checked="checked" id="__tabbed_16_1" name="__tabbed_16" type="radio" /><input id="__tabbed_16_2" name="__tabbed_16" type="radio" /><input id="__tabbed_16_3" name="__tabbed_16" type="radio" /><input id="__tabbed_16_4" name="__tabbed_16" type="radio" /><input id="__tabbed_16_5" name="__tabbed_16" type="radio" /><input id="__tabbed_16_6" name="__tabbed_16" type="radio" /><input id="__tabbed_16_7" name="__tabbed_16" type="radio" /><input id="__tabbed_16_8" name="__tabbed_16" type="radio" /><input id="__tabbed_16_9" name="__tabbed_16" type="radio" /><input id="__tabbed_16_10" name="__tabbed_16" type="radio" /><input id="__tabbed_16_11" name="__tabbed_16" type="radio" /><input id="__tabbed_16_12" name="__tabbed_16" type="radio" /><div class="tabbed-labels"><label for="__tabbed_16_1">Python</label><label for="__tabbed_16_2">C++</label><label for="__tabbed_16_3">Java</label><label for="__tabbed_16_4">C#</label><label for="__tabbed_16_5">Go</label><label for="__tabbed_16_6">Swift</label><label for="__tabbed_16_7">JS</label><label for="__tabbed_16_8">TS</label><label for="__tabbed_16_9">Dart</label><label for="__tabbed_16_10">Rust</label><label for="__tabbed_16_11">C</label><label for="__tabbed_16_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.py</span><pre><span></span><code><a id="__codelineno-180-1" name="__codelineno-180-1" href="#__codelineno-180-1"></a><span class="k">def</span> <span class="nf">random_numbers</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]:</span>
<a id="__codelineno-180-2" name="__codelineno-180-2" href="#__codelineno-180-2"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱&quot;&quot;&quot;</span>
<a id="__codelineno-180-3" name="__codelineno-180-3" href="#__codelineno-180-3"></a> <span class="c1"># 生成数组 nums =: 1, 2, 3, ..., n</span>
<a id="__codelineno-180-4" name="__codelineno-180-4" href="#__codelineno-180-4"></a> <span class="n">nums</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)]</span>
<a id="__codelineno-180-5" name="__codelineno-180-5" href="#__codelineno-180-5"></a> <span class="c1"># 随机打乱数组元素</span>
<a id="__codelineno-180-6" name="__codelineno-180-6" href="#__codelineno-180-6"></a> <span class="n">random</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">nums</span><span class="p">)</span>
<a id="__codelineno-180-7" name="__codelineno-180-7" href="#__codelineno-180-7"></a> <span class="k">return</span> <span class="n">nums</span>
<a id="__codelineno-180-8" name="__codelineno-180-8" href="#__codelineno-180-8"></a>
<a id="__codelineno-180-9" name="__codelineno-180-9" href="#__codelineno-180-9"></a><span class="k">def</span> <span class="nf">find_one</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<a id="__codelineno-180-10" name="__codelineno-180-10" href="#__codelineno-180-10"></a><span class="w"> </span><span class="sd">&quot;&quot;&quot;查找数组 nums 中数字 1 所在索引&quot;&quot;&quot;</span>
<a id="__codelineno-180-11" name="__codelineno-180-11" href="#__codelineno-180-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nums</span><span class="p">)):</span>
<a id="__codelineno-180-12" name="__codelineno-180-12" href="#__codelineno-180-12"></a> <span class="c1"># 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-180-13" name="__codelineno-180-13" href="#__codelineno-180-13"></a> <span class="c1"># 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-180-14" name="__codelineno-180-14" href="#__codelineno-180-14"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-180-15" name="__codelineno-180-15" href="#__codelineno-180-15"></a> <span class="k">return</span> <span class="n">i</span>
<a id="__codelineno-180-16" name="__codelineno-180-16" href="#__codelineno-180-16"></a> <span class="k">return</span> <span class="o">-</span><span class="mi">1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-181-1" name="__codelineno-181-1" href="#__codelineno-181-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-181-2" name="__codelineno-181-2" href="#__codelineno-181-2"></a><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-181-3" name="__codelineno-181-3" href="#__codelineno-181-3"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">(</span><span class="n">n</span><span class="p">);</span>
<a id="__codelineno-181-4" name="__codelineno-181-4" href="#__codelineno-181-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-181-5" name="__codelineno-181-5" href="#__codelineno-181-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-181-6" name="__codelineno-181-6" href="#__codelineno-181-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-181-7" name="__codelineno-181-7" href="#__codelineno-181-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-181-8" name="__codelineno-181-8" href="#__codelineno-181-8"></a><span class="w"> </span><span class="c1">// 使用系统时间生成随机种子</span>
<a id="__codelineno-181-9" name="__codelineno-181-9" href="#__codelineno-181-9"></a><span class="w"> </span><span class="kt">unsigned</span><span class="w"> </span><span class="n">seed</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">chrono</span><span class="o">::</span><span class="n">system_clock</span><span class="o">::</span><span class="n">now</span><span class="p">().</span><span class="n">time_since_epoch</span><span class="p">().</span><span class="n">count</span><span class="p">();</span>
<a id="__codelineno-181-10" name="__codelineno-181-10" href="#__codelineno-181-10"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-181-11" name="__codelineno-181-11" href="#__codelineno-181-11"></a><span class="w"> </span><span class="n">shuffle</span><span class="p">(</span><span class="n">nums</span><span class="p">.</span><span class="n">begin</span><span class="p">(),</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">end</span><span class="p">(),</span><span class="w"> </span><span class="n">default_random_engine</span><span class="p">(</span><span class="n">seed</span><span class="p">));</span>
<a id="__codelineno-181-12" name="__codelineno-181-12" href="#__codelineno-181-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-181-13" name="__codelineno-181-13" href="#__codelineno-181-13"></a><span class="p">}</span>
<a id="__codelineno-181-14" name="__codelineno-181-14" href="#__codelineno-181-14"></a>
<a id="__codelineno-181-15" name="__codelineno-181-15" href="#__codelineno-181-15"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-181-16" name="__codelineno-181-16" href="#__codelineno-181-16"></a><span class="kt">int</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-181-17" name="__codelineno-181-17" href="#__codelineno-181-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">size</span><span class="p">();</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-181-18" name="__codelineno-181-18" href="#__codelineno-181-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-181-19" name="__codelineno-181-19" href="#__codelineno-181-19"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-181-20" name="__codelineno-181-20" href="#__codelineno-181-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-181-21" name="__codelineno-181-21" href="#__codelineno-181-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-181-22" name="__codelineno-181-22" href="#__codelineno-181-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-181-23" name="__codelineno-181-23" href="#__codelineno-181-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">-1</span><span class="p">;</span>
<a id="__codelineno-181-24" name="__codelineno-181-24" href="#__codelineno-181-24"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.java</span><pre><span></span><code><a id="__codelineno-182-1" name="__codelineno-182-1" href="#__codelineno-182-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-182-2" name="__codelineno-182-2" href="#__codelineno-182-2"></a><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="nf">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-182-3" name="__codelineno-182-3" href="#__codelineno-182-3"></a><span class="w"> </span><span class="n">Integer</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">Integer</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-182-4" name="__codelineno-182-4" href="#__codelineno-182-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-182-5" name="__codelineno-182-5" href="#__codelineno-182-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-182-6" name="__codelineno-182-6" href="#__codelineno-182-6"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-182-7" name="__codelineno-182-7" href="#__codelineno-182-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-182-8" name="__codelineno-182-8" href="#__codelineno-182-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-182-9" name="__codelineno-182-9" href="#__codelineno-182-9"></a><span class="w"> </span><span class="n">Collections</span><span class="p">.</span><span class="na">shuffle</span><span class="p">(</span><span class="n">Arrays</span><span class="p">.</span><span class="na">asList</span><span class="p">(</span><span class="n">nums</span><span class="p">));</span>
<a id="__codelineno-182-10" name="__codelineno-182-10" href="#__codelineno-182-10"></a><span class="w"> </span><span class="c1">// Integer[] -&gt; int[]</span>
<a id="__codelineno-182-11" name="__codelineno-182-11" href="#__codelineno-182-11"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-182-12" name="__codelineno-182-12" href="#__codelineno-182-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-182-13" name="__codelineno-182-13" href="#__codelineno-182-13"></a><span class="w"> </span><span class="n">res</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-182-14" name="__codelineno-182-14" href="#__codelineno-182-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-182-15" name="__codelineno-182-15" href="#__codelineno-182-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span>
<a id="__codelineno-182-16" name="__codelineno-182-16" href="#__codelineno-182-16"></a><span class="p">}</span>
<a id="__codelineno-182-17" name="__codelineno-182-17" href="#__codelineno-182-17"></a>
<a id="__codelineno-182-18" name="__codelineno-182-18" href="#__codelineno-182-18"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-182-19" name="__codelineno-182-19" href="#__codelineno-182-19"></a><span class="kt">int</span><span class="w"> </span><span class="nf">findOne</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-182-20" name="__codelineno-182-20" href="#__codelineno-182-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-182-21" name="__codelineno-182-21" href="#__codelineno-182-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-182-22" name="__codelineno-182-22" href="#__codelineno-182-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-182-23" name="__codelineno-182-23" href="#__codelineno-182-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-182-24" name="__codelineno-182-24" href="#__codelineno-182-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-182-25" name="__codelineno-182-25" href="#__codelineno-182-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-182-26" name="__codelineno-182-26" href="#__codelineno-182-26"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-182-27" name="__codelineno-182-27" href="#__codelineno-182-27"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.cs</span><pre><span></span><code><a id="__codelineno-183-1" name="__codelineno-183-1" href="#__codelineno-183-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-183-2" name="__codelineno-183-2" href="#__codelineno-183-2"></a><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="nf">RandomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-183-3" name="__codelineno-183-3" href="#__codelineno-183-3"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="p">];</span>
<a id="__codelineno-183-4" name="__codelineno-183-4" href="#__codelineno-183-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-183-5" name="__codelineno-183-5" href="#__codelineno-183-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-183-6" name="__codelineno-183-6" href="#__codelineno-183-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-183-7" name="__codelineno-183-7" href="#__codelineno-183-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-183-8" name="__codelineno-183-8" href="#__codelineno-183-8"></a>
<a id="__codelineno-183-9" name="__codelineno-183-9" href="#__codelineno-183-9"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-183-10" name="__codelineno-183-10" href="#__codelineno-183-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-183-11" name="__codelineno-183-11" href="#__codelineno-183-11"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">index</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">Random</span><span class="p">().</span><span class="n">Next</span><span class="p">(</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">);</span>
<a id="__codelineno-183-12" name="__codelineno-183-12" href="#__codelineno-183-12"></a><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">index</span><span class="p">])</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">index</span><span class="p">],</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-183-13" name="__codelineno-183-13" href="#__codelineno-183-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-183-14" name="__codelineno-183-14" href="#__codelineno-183-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-183-15" name="__codelineno-183-15" href="#__codelineno-183-15"></a><span class="p">}</span>
<a id="__codelineno-183-16" name="__codelineno-183-16" href="#__codelineno-183-16"></a>
<a id="__codelineno-183-17" name="__codelineno-183-17" href="#__codelineno-183-17"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-183-18" name="__codelineno-183-18" href="#__codelineno-183-18"></a><span class="kt">int</span><span class="w"> </span><span class="nf">FindOne</span><span class="p">(</span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-183-19" name="__codelineno-183-19" href="#__codelineno-183-19"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">Length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-183-20" name="__codelineno-183-20" href="#__codelineno-183-20"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-183-21" name="__codelineno-183-21" href="#__codelineno-183-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-183-22" name="__codelineno-183-22" href="#__codelineno-183-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span>
<a id="__codelineno-183-23" name="__codelineno-183-23" href="#__codelineno-183-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-183-24" name="__codelineno-183-24" href="#__codelineno-183-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-183-25" name="__codelineno-183-25" href="#__codelineno-183-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-183-26" name="__codelineno-183-26" href="#__codelineno-183-26"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.go</span><pre><span></span><code><a id="__codelineno-184-1" name="__codelineno-184-1" href="#__codelineno-184-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-184-2" name="__codelineno-184-2" href="#__codelineno-184-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">randomNumbers</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-184-3" name="__codelineno-184-3" href="#__codelineno-184-3"></a><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-184-4" name="__codelineno-184-4" href="#__codelineno-184-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-184-5" name="__codelineno-184-5" href="#__codelineno-184-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-184-6" name="__codelineno-184-6" href="#__codelineno-184-6"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-184-7" name="__codelineno-184-7" href="#__codelineno-184-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-184-8" name="__codelineno-184-8" href="#__codelineno-184-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-184-9" name="__codelineno-184-9" href="#__codelineno-184-9"></a><span class="w"> </span><span class="nx">rand</span><span class="p">.</span><span class="nx">Shuffle</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">),</span><span class="w"> </span><span class="kd">func</span><span class="p">(</span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-184-10" name="__codelineno-184-10" href="#__codelineno-184-10"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">j</span><span class="p">],</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span>
<a id="__codelineno-184-11" name="__codelineno-184-11" href="#__codelineno-184-11"></a><span class="w"> </span><span class="p">})</span>
<a id="__codelineno-184-12" name="__codelineno-184-12" href="#__codelineno-184-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">nums</span>
<a id="__codelineno-184-13" name="__codelineno-184-13" href="#__codelineno-184-13"></a><span class="p">}</span>
<a id="__codelineno-184-14" name="__codelineno-184-14" href="#__codelineno-184-14"></a>
<a id="__codelineno-184-15" name="__codelineno-184-15" href="#__codelineno-184-15"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-184-16" name="__codelineno-184-16" href="#__codelineno-184-16"></a><span class="kd">func</span><span class="w"> </span><span class="nx">findOne</span><span class="p">(</span><span class="nx">nums</span><span class="w"> </span><span class="p">[]</span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-184-17" name="__codelineno-184-17" href="#__codelineno-184-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="nx">nums</span><span class="p">);</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-184-18" name="__codelineno-184-18" href="#__codelineno-184-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-184-19" name="__codelineno-184-19" href="#__codelineno-184-19"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-184-20" name="__codelineno-184-20" href="#__codelineno-184-20"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-184-21" name="__codelineno-184-21" href="#__codelineno-184-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span>
<a id="__codelineno-184-22" name="__codelineno-184-22" href="#__codelineno-184-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-184-23" name="__codelineno-184-23" href="#__codelineno-184-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-184-24" name="__codelineno-184-24" href="#__codelineno-184-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span>
<a id="__codelineno-184-25" name="__codelineno-184-25" href="#__codelineno-184-25"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.swift</span><pre><span></span><code><a id="__codelineno-185-1" name="__codelineno-185-1" href="#__codelineno-185-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-185-2" name="__codelineno-185-2" href="#__codelineno-185-2"></a><span class="kd">func</span> <span class="nf">randomNumbers</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[</span><span class="nb">Int</span><span class="p">]</span> <span class="p">{</span>
<a id="__codelineno-185-3" name="__codelineno-185-3" href="#__codelineno-185-3"></a> <span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-185-4" name="__codelineno-185-4" href="#__codelineno-185-4"></a> <span class="kd">var</span> <span class="nv">nums</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="mi">1</span> <span class="p">...</span> <span class="n">n</span><span class="p">)</span>
<a id="__codelineno-185-5" name="__codelineno-185-5" href="#__codelineno-185-5"></a> <span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-185-6" name="__codelineno-185-6" href="#__codelineno-185-6"></a> <span class="n">nums</span><span class="p">.</span><span class="n">shuffle</span><span class="p">()</span>
<a id="__codelineno-185-7" name="__codelineno-185-7" href="#__codelineno-185-7"></a> <span class="k">return</span> <span class="n">nums</span>
<a id="__codelineno-185-8" name="__codelineno-185-8" href="#__codelineno-185-8"></a><span class="p">}</span>
<a id="__codelineno-185-9" name="__codelineno-185-9" href="#__codelineno-185-9"></a>
<a id="__codelineno-185-10" name="__codelineno-185-10" href="#__codelineno-185-10"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-185-11" name="__codelineno-185-11" href="#__codelineno-185-11"></a><span class="kd">func</span> <span class="nf">findOne</span><span class="p">(</span><span class="n">nums</span><span class="p">:</span> <span class="p">[</span><span class="nb">Int</span><span class="p">])</span> <span class="p">-&gt;</span> <span class="nb">Int</span> <span class="p">{</span>
<a id="__codelineno-185-12" name="__codelineno-185-12" href="#__codelineno-185-12"></a> <span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="n">nums</span><span class="p">.</span><span class="bp">indices</span> <span class="p">{</span>
<a id="__codelineno-185-13" name="__codelineno-185-13" href="#__codelineno-185-13"></a> <span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-185-14" name="__codelineno-185-14" href="#__codelineno-185-14"></a> <span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-185-15" name="__codelineno-185-15" href="#__codelineno-185-15"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="p">==</span> <span class="mi">1</span> <span class="p">{</span>
<a id="__codelineno-185-16" name="__codelineno-185-16" href="#__codelineno-185-16"></a> <span class="k">return</span> <span class="n">i</span>
<a id="__codelineno-185-17" name="__codelineno-185-17" href="#__codelineno-185-17"></a> <span class="p">}</span>
<a id="__codelineno-185-18" name="__codelineno-185-18" href="#__codelineno-185-18"></a> <span class="p">}</span>
<a id="__codelineno-185-19" name="__codelineno-185-19" href="#__codelineno-185-19"></a> <span class="k">return</span> <span class="o">-</span><span class="mi">1</span>
<a id="__codelineno-185-20" name="__codelineno-185-20" href="#__codelineno-185-20"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.js</span><pre><span></span><code><a id="__codelineno-186-1" name="__codelineno-186-1" href="#__codelineno-186-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-186-2" name="__codelineno-186-2" href="#__codelineno-186-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">randomNumbers</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-186-3" name="__codelineno-186-3" href="#__codelineno-186-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">);</span>
<a id="__codelineno-186-4" name="__codelineno-186-4" href="#__codelineno-186-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-186-5" name="__codelineno-186-5" href="#__codelineno-186-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-186-6" name="__codelineno-186-6" href="#__codelineno-186-6"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-186-7" name="__codelineno-186-7" href="#__codelineno-186-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-186-8" name="__codelineno-186-8" href="#__codelineno-186-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-186-9" name="__codelineno-186-9" href="#__codelineno-186-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-186-10" name="__codelineno-186-10" href="#__codelineno-186-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">r</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">floor</span><span class="p">(</span><span class="nb">Math</span><span class="p">.</span><span class="nx">random</span><span class="p">()</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">));</span>
<a id="__codelineno-186-11" name="__codelineno-186-11" href="#__codelineno-186-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-186-12" name="__codelineno-186-12" href="#__codelineno-186-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">];</span>
<a id="__codelineno-186-13" name="__codelineno-186-13" href="#__codelineno-186-13"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">temp</span><span class="p">;</span>
<a id="__codelineno-186-14" name="__codelineno-186-14" href="#__codelineno-186-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-186-15" name="__codelineno-186-15" href="#__codelineno-186-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">nums</span><span class="p">;</span>
<a id="__codelineno-186-16" name="__codelineno-186-16" href="#__codelineno-186-16"></a><span class="p">}</span>
<a id="__codelineno-186-17" name="__codelineno-186-17" href="#__codelineno-186-17"></a>
<a id="__codelineno-186-18" name="__codelineno-186-18" href="#__codelineno-186-18"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-186-19" name="__codelineno-186-19" href="#__codelineno-186-19"></a><span class="kd">function</span><span class="w"> </span><span class="nx">findOne</span><span class="p">(</span><span class="nx">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-186-20" name="__codelineno-186-20" href="#__codelineno-186-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-186-21" name="__codelineno-186-21" href="#__codelineno-186-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-186-22" name="__codelineno-186-22" href="#__codelineno-186-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-186-23" name="__codelineno-186-23" href="#__codelineno-186-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-186-24" name="__codelineno-186-24" href="#__codelineno-186-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-186-25" name="__codelineno-186-25" href="#__codelineno-186-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-186-26" name="__codelineno-186-26" href="#__codelineno-186-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-186-27" name="__codelineno-186-27" href="#__codelineno-186-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-186-28" name="__codelineno-186-28" href="#__codelineno-186-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.ts</span><pre><span></span><code><a id="__codelineno-187-1" name="__codelineno-187-1" href="#__codelineno-187-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-187-2" name="__codelineno-187-2" href="#__codelineno-187-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">randomNumbers</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-187-3" name="__codelineno-187-3" href="#__codelineno-187-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">);</span>
<a id="__codelineno-187-4" name="__codelineno-187-4" href="#__codelineno-187-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-187-5" name="__codelineno-187-5" href="#__codelineno-187-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-187-6" name="__codelineno-187-6" href="#__codelineno-187-6"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-187-7" name="__codelineno-187-7" href="#__codelineno-187-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-187-8" name="__codelineno-187-8" href="#__codelineno-187-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-187-9" name="__codelineno-187-9" href="#__codelineno-187-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-187-10" name="__codelineno-187-10" href="#__codelineno-187-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">r</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">floor</span><span class="p">(</span><span class="nb">Math</span><span class="p">.</span><span class="nx">random</span><span class="p">()</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">));</span>
<a id="__codelineno-187-11" name="__codelineno-187-11" href="#__codelineno-187-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-187-12" name="__codelineno-187-12" href="#__codelineno-187-12"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">];</span>
<a id="__codelineno-187-13" name="__codelineno-187-13" href="#__codelineno-187-13"></a><span class="w"> </span><span class="nx">nums</span><span class="p">[</span><span class="nx">r</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">temp</span><span class="p">;</span>
<a id="__codelineno-187-14" name="__codelineno-187-14" href="#__codelineno-187-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-187-15" name="__codelineno-187-15" href="#__codelineno-187-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">nums</span><span class="p">;</span>
<a id="__codelineno-187-16" name="__codelineno-187-16" href="#__codelineno-187-16"></a><span class="p">}</span>
<a id="__codelineno-187-17" name="__codelineno-187-17" href="#__codelineno-187-17"></a>
<a id="__codelineno-187-18" name="__codelineno-187-18" href="#__codelineno-187-18"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-187-19" name="__codelineno-187-19" href="#__codelineno-187-19"></a><span class="kd">function</span><span class="w"> </span><span class="nx">findOne</span><span class="p">(</span><span class="nx">nums</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-187-20" name="__codelineno-187-20" href="#__codelineno-187-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">nums</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-187-21" name="__codelineno-187-21" href="#__codelineno-187-21"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-187-22" name="__codelineno-187-22" href="#__codelineno-187-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-187-23" name="__codelineno-187-23" href="#__codelineno-187-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">nums</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-187-24" name="__codelineno-187-24" href="#__codelineno-187-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-187-25" name="__codelineno-187-25" href="#__codelineno-187-25"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-187-26" name="__codelineno-187-26" href="#__codelineno-187-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-187-27" name="__codelineno-187-27" href="#__codelineno-187-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-187-28" name="__codelineno-187-28" href="#__codelineno-187-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.dart</span><pre><span></span><code><a id="__codelineno-188-1" name="__codelineno-188-1" href="#__codelineno-188-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-188-2" name="__codelineno-188-2" href="#__codelineno-188-2"></a><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-188-3" name="__codelineno-188-3" href="#__codelineno-188-3"></a><span class="w"> </span><span class="kd">final</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">List</span><span class="p">.</span><span class="n">filled</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-188-4" name="__codelineno-188-4" href="#__codelineno-188-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-188-5" name="__codelineno-188-5" href="#__codelineno-188-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-188-6" name="__codelineno-188-6" href="#__codelineno-188-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-188-7" name="__codelineno-188-7" href="#__codelineno-188-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-188-8" name="__codelineno-188-8" href="#__codelineno-188-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-188-9" name="__codelineno-188-9" href="#__codelineno-188-9"></a><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">shuffle</span><span class="p">();</span>
<a id="__codelineno-188-10" name="__codelineno-188-10" href="#__codelineno-188-10"></a>
<a id="__codelineno-188-11" name="__codelineno-188-11" href="#__codelineno-188-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-188-12" name="__codelineno-188-12" href="#__codelineno-188-12"></a><span class="p">}</span>
<a id="__codelineno-188-13" name="__codelineno-188-13" href="#__codelineno-188-13"></a>
<a id="__codelineno-188-14" name="__codelineno-188-14" href="#__codelineno-188-14"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-188-15" name="__codelineno-188-15" href="#__codelineno-188-15"></a><span class="kt">int</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-188-16" name="__codelineno-188-16" href="#__codelineno-188-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">var</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-188-17" name="__codelineno-188-17" href="#__codelineno-188-17"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-188-18" name="__codelineno-188-18" href="#__codelineno-188-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-188-19" name="__codelineno-188-19" href="#__codelineno-188-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-188-20" name="__codelineno-188-20" href="#__codelineno-188-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-188-21" name="__codelineno-188-21" href="#__codelineno-188-21"></a>
<a id="__codelineno-188-22" name="__codelineno-188-22" href="#__codelineno-188-22"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">;</span>
<a id="__codelineno-188-23" name="__codelineno-188-23" href="#__codelineno-188-23"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.rs</span><pre><span></span><code><a id="__codelineno-189-1" name="__codelineno-189-1" href="#__codelineno-189-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-189-2" name="__codelineno-189-2" href="#__codelineno-189-2"></a><span class="k">fn</span> <span class="nf">random_numbers</span><span class="p">(</span><span class="n">n</span>: <span class="kt">i32</span><span class="p">)</span><span class="w"> </span>-&gt; <span class="nb">Vec</span><span class="o">&lt;</span><span class="kt">i32</span><span class="o">&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-189-3" name="__codelineno-189-3" href="#__codelineno-189-3"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-189-4" name="__codelineno-189-4" href="#__codelineno-189-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="k">mut</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="mi">1</span><span class="o">..=</span><span class="n">n</span><span class="p">).</span><span class="n">collect</span>::<span class="o">&lt;</span><span class="nb">Vec</span><span class="o">&lt;</span><span class="kt">i32</span><span class="o">&gt;&gt;</span><span class="p">();</span>
<a id="__codelineno-189-5" name="__codelineno-189-5" href="#__codelineno-189-5"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-189-6" name="__codelineno-189-6" href="#__codelineno-189-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">shuffle</span><span class="p">(</span><span class="o">&amp;</span><span class="k">mut</span><span class="w"> </span><span class="n">thread_rng</span><span class="p">());</span>
<a id="__codelineno-189-7" name="__codelineno-189-7" href="#__codelineno-189-7"></a><span class="w"> </span><span class="n">nums</span>
<a id="__codelineno-189-8" name="__codelineno-189-8" href="#__codelineno-189-8"></a><span class="p">}</span>
<a id="__codelineno-189-9" name="__codelineno-189-9" href="#__codelineno-189-9"></a>
<a id="__codelineno-189-10" name="__codelineno-189-10" href="#__codelineno-189-10"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-189-11" name="__codelineno-189-11" href="#__codelineno-189-11"></a><span class="k">fn</span> <span class="nf">find_one</span><span class="p">(</span><span class="n">nums</span>: <span class="kp">&amp;</span><span class="p">[</span><span class="kt">i32</span><span class="p">])</span><span class="w"> </span>-&gt; <span class="nb">Option</span><span class="o">&lt;</span><span class="kt">usize</span><span class="o">&gt;</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-189-12" name="__codelineno-189-12" href="#__codelineno-189-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="mi">0</span><span class="o">..</span><span class="n">nums</span><span class="p">.</span><span class="n">len</span><span class="p">()</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-189-13" name="__codelineno-189-13" href="#__codelineno-189-13"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-189-14" name="__codelineno-189-14" href="#__codelineno-189-14"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-189-15" name="__codelineno-189-15" href="#__codelineno-189-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-189-16" name="__codelineno-189-16" href="#__codelineno-189-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
<a id="__codelineno-189-17" name="__codelineno-189-17" href="#__codelineno-189-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-189-18" name="__codelineno-189-18" href="#__codelineno-189-18"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-189-19" name="__codelineno-189-19" href="#__codelineno-189-19"></a><span class="w"> </span><span class="nb">None</span>
<a id="__codelineno-189-20" name="__codelineno-189-20" href="#__codelineno-189-20"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.c</span><pre><span></span><code><a id="__codelineno-190-1" name="__codelineno-190-1" href="#__codelineno-190-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span>
<a id="__codelineno-190-2" name="__codelineno-190-2" href="#__codelineno-190-2"></a><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="nf">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-190-3" name="__codelineno-190-3" href="#__codelineno-190-3"></a><span class="w"> </span><span class="c1">// 分配堆区内存(创建一维可变长数组:数组中元素数量为 n ,元素类型为 int </span>
<a id="__codelineno-190-4" name="__codelineno-190-4" href="#__codelineno-190-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">malloc</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="k">sizeof</span><span class="p">(</span><span class="kt">int</span><span class="p">));</span>
<a id="__codelineno-190-5" name="__codelineno-190-5" href="#__codelineno-190-5"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-190-6" name="__codelineno-190-6" href="#__codelineno-190-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-190-7" name="__codelineno-190-7" href="#__codelineno-190-7"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-190-8" name="__codelineno-190-8" href="#__codelineno-190-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-190-9" name="__codelineno-190-9" href="#__codelineno-190-9"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-190-10" name="__codelineno-190-10" href="#__codelineno-190-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-190-11" name="__codelineno-190-11" href="#__codelineno-190-11"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">rand</span><span class="p">()</span><span class="w"> </span><span class="o">%</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-190-12" name="__codelineno-190-12" href="#__codelineno-190-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<a id="__codelineno-190-13" name="__codelineno-190-13" href="#__codelineno-190-13"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span>
<a id="__codelineno-190-14" name="__codelineno-190-14" href="#__codelineno-190-14"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">temp</span><span class="p">;</span>
<a id="__codelineno-190-15" name="__codelineno-190-15" href="#__codelineno-190-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-190-16" name="__codelineno-190-16" href="#__codelineno-190-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-190-17" name="__codelineno-190-17" href="#__codelineno-190-17"></a><span class="p">}</span>
<a id="__codelineno-190-18" name="__codelineno-190-18" href="#__codelineno-190-18"></a>
<a id="__codelineno-190-19" name="__codelineno-190-19" href="#__codelineno-190-19"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span>
<a id="__codelineno-190-20" name="__codelineno-190-20" href="#__codelineno-190-20"></a><span class="kt">int</span><span class="w"> </span><span class="nf">findOne</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="o">*</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-190-21" name="__codelineno-190-21" href="#__codelineno-190-21"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-190-22" name="__codelineno-190-22" href="#__codelineno-190-22"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-190-23" name="__codelineno-190-23" href="#__codelineno-190-23"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-190-24" name="__codelineno-190-24" href="#__codelineno-190-24"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-190-25" name="__codelineno-190-25" href="#__codelineno-190-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-190-26" name="__codelineno-190-26" href="#__codelineno-190-26"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-190-27" name="__codelineno-190-27" href="#__codelineno-190-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">-1</span><span class="p">;</span>
<a id="__codelineno-190-28" name="__codelineno-190-28" href="#__codelineno-190-28"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.zig</span><pre><span></span><code><a id="__codelineno-191-1" name="__codelineno-191-1" href="#__codelineno-191-1"></a><span class="c1">// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱</span>
<a id="__codelineno-191-2" name="__codelineno-191-2" href="#__codelineno-191-2"></a><span class="k">fn</span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="kr">comptime</span><span class="w"> </span><span class="n">n</span><span class="o">:</span><span class="w"> </span><span class="kt">usize</span><span class="p">)</span><span class="w"> </span><span class="p">[</span><span class="n">n</span><span class="p">]</span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-191-3" name="__codelineno-191-3" href="#__codelineno-191-3"></a><span class="w"> </span><span class="kr">var</span><span class="w"> </span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[</span><span class="n">n</span><span class="p">]</span><span class="kt">i32</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">undefined</span><span class="p">;</span>
<a id="__codelineno-191-4" name="__codelineno-191-4" href="#__codelineno-191-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-191-5" name="__codelineno-191-5" href="#__codelineno-191-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="o">&amp;</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">..)</span><span class="w"> </span><span class="o">|*</span><span class="n">num</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-191-6" name="__codelineno-191-6" href="#__codelineno-191-6"></a><span class="w"> </span><span class="n">num</span><span class="p">.</span><span class="o">*</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">@as</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="n">i</span><span class="p">))</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-191-7" name="__codelineno-191-7" href="#__codelineno-191-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-191-8" name="__codelineno-191-8" href="#__codelineno-191-8"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-191-9" name="__codelineno-191-9" href="#__codelineno-191-9"></a><span class="w"> </span><span class="kr">const</span><span class="w"> </span><span class="n">rand</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">std</span><span class="p">.</span><span class="n">crypto</span><span class="p">.</span><span class="n">random</span><span class="p">;</span>
<a id="__codelineno-191-10" name="__codelineno-191-10" href="#__codelineno-191-10"></a><span class="w"> </span><span class="n">rand</span><span class="p">.</span><span class="n">shuffle</span><span class="p">(</span><span class="kt">i32</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nums</span><span class="p">);</span>
<a id="__codelineno-191-11" name="__codelineno-191-11" href="#__codelineno-191-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-191-12" name="__codelineno-191-12" href="#__codelineno-191-12"></a><span class="p">}</span>
<a id="__codelineno-191-13" name="__codelineno-191-13" href="#__codelineno-191-13"></a>
<a id="__codelineno-191-14" name="__codelineno-191-14" href="#__codelineno-191-14"></a><span class="c1">// 查找数组 nums 中数字 1 所在索引</span>
<a id="__codelineno-191-15" name="__codelineno-191-15" href="#__codelineno-191-15"></a><span class="k">fn</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">nums</span><span class="o">:</span><span class="w"> </span><span class="p">[]</span><span class="kt">i32</span><span class="p">)</span><span class="w"> </span><span class="kt">i32</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-191-16" name="__codelineno-191-16" href="#__codelineno-191-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">..)</span><span class="w"> </span><span class="o">|</span><span class="n">num</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="o">|</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-191-17" name="__codelineno-191-17" href="#__codelineno-191-17"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)</span>
<a id="__codelineno-191-18" name="__codelineno-191-18" href="#__codelineno-191-18"></a><span class="w"> </span><span class="c1">// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)</span>
<a id="__codelineno-191-19" name="__codelineno-191-19" href="#__codelineno-191-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">num</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">@intCast</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
<a id="__codelineno-191-20" name="__codelineno-191-20" href="#__codelineno-191-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-191-21" name="__codelineno-191-21" href="#__codelineno-191-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">;</span>
<a id="__codelineno-191-22" name="__codelineno-191-22" href="#__codelineno-191-22"></a><span class="p">}</span>
</code></pre></div>
</div>
</div>
</div>
<p>值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。<strong>而最差时间复杂度更为实用,因为它给出了一个效率安全值</strong>,让我们可以放心地使用算法。</p>
<p>从上述示例可以看出,最差或最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,<strong>平均时间复杂度可以体现算法在随机输入数据下的运行效率</strong>,用 <span class="arithmatex">\(\Theta\)</span> 记号来表示。</p>
<p>对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 <span class="arithmatex">\(1\)</span> 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 <span class="arithmatex">\(n / 2\)</span> ,平均时间复杂度为 <span class="arithmatex">\(\Theta(n / 2) = \Theta(n)\)</span></p>
<p>但对于较为复杂的算法,计算平均时间复杂度往往是比较困难的,因为很难分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。</p>
<div class="admonition question">
<p class="admonition-title">为什么很少看到 <span class="arithmatex">\(\Theta\)</span> 符号?</p>
<p>可能由于 <span class="arithmatex">\(O\)</span> 符号过于朗朗上口,我们常常使用它来表示平均时间复杂度。但从严格意义上看,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 <span class="arithmatex">\(O(n)\)</span>”的表述,请将其直接理解为 <span class="arithmatex">\(\Theta(n)\)</span></p>
</div>
<!-- Source file information -->
<!-- Was this page helpful? -->
<!-- Previous and next pages link -->
<nav
class="md-footer__inner md-grid"
aria-label="页脚"
>
<!-- Link to previous page -->
<a
href="../iteration_and_recursion/"
class="md-footer__link md-footer__link--prev"
aria-label="上一页: 2.2 &amp;nbsp; 迭代与递归"
rel="prev"
>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一页
</span>
<div class="md-ellipsis">
2.2 &nbsp; 迭代与递归
</div>
</div>
</a>
<!-- Link to next page -->
<a
href="../space_complexity/"
class="md-footer__link md-footer__link--next"
aria-label="下一页: 2.4 &amp;nbsp; 空间复杂度"
rel="next"
>
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
2.4 &nbsp; 空间复杂度
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<!-- Comment system -->
<h5 align="center" id="__comments">欢迎在评论区留下你的见解、疑惑或建议</h5>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="1"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="top"
data-theme="preferred_color_scheme"
data-lang="zh-CN"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark_dimmed" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
</div>
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
回到页面顶部
</button>
</main>
<footer class="md-footer">
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../iteration_and_recursion/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 2.2 &amp;nbsp; 迭代与递归" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
<div class="md-footer__title">
<span class="md-footer__direction">
上一页
</span>
<div class="md-ellipsis">
2.2 &nbsp; 迭代与递归
</div>
</div>
</a>
<a href="../space_complexity/" class="md-footer__link md-footer__link--next" aria-label="下一页: 2.4 &amp;nbsp; 空间复杂度" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
2.4 &nbsp; 空间复杂度
</div>
</div>
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
</div>
</a>
</nav>
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2022 - 2023 Krahets
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.4.2 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.instant", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.a264c092.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.4e0fa4ba.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script>document$.subscribe(() => {const lightbox = GLightbox({"touchNavigation": true, "loop": false, "zoomable": true, "draggable": false, "openEffect": "zoom", "closeEffect": "zoom", "slideEffect": "none"});})</script></body>
</html>