hello-algo/en/codes/java/chapter_dynamic_programming/min_path_sum.java
Yudong Jin 1c0f350ad6
translation: Add Python and Java code for EN version (#1345)
* Add the intial translation of code of all the languages

* test

* revert

* Remove

* Add Python and Java code for EN version
2024-05-06 05:21:51 +08:00

125 lines
4.4 KiB
Java

/**
* File: min_path_sum.java
* Created Time: 2023-07-10
* Author: krahets (krahets@163.com)
*/
package chapter_dynamic_programming;
import java.util.Arrays;
public class min_path_sum {
/* Minimum path sum: Brute force search */
static int minPathSumDFS(int[][] grid, int i, int j) {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0];
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
return Integer.MAX_VALUE;
}
// Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1)
int up = minPathSumDFS(grid, i - 1, j);
int left = minPathSumDFS(grid, i, j - 1);
// Return the minimum path cost from the top-left to (i, j)
return Math.min(left, up) + grid[i][j];
}
/* Minimum path sum: Memoized search */
static int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
// If it's the top-left cell, terminate the search
if (i == 0 && j == 0) {
return grid[0][0];
}
// If the row or column index is out of bounds, return a +∞ cost
if (i < 0 || j < 0) {
return Integer.MAX_VALUE;
}
// If there is a record, return it
if (mem[i][j] != -1) {
return mem[i][j];
}
// The minimum path cost from the left and top cells
int up = minPathSumDFSMem(grid, mem, i - 1, j);
int left = minPathSumDFSMem(grid, mem, i, j - 1);
// Record and return the minimum path cost from the top-left to (i, j)
mem[i][j] = Math.min(left, up) + grid[i][j];
return mem[i][j];
}
/* Minimum path sum: Dynamic programming */
static int minPathSumDP(int[][] grid) {
int n = grid.length, m = grid[0].length;
// Initialize dp table
int[][] dp = new int[n][m];
dp[0][0] = grid[0][0];
// State transition: first row
for (int j = 1; j < m; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// State transition: first column
for (int i = 1; i < n; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// State transition: the rest of the rows and columns
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[n - 1][m - 1];
}
/* Minimum path sum: Space-optimized dynamic programming */
static int minPathSumDPComp(int[][] grid) {
int n = grid.length, m = grid[0].length;
// Initialize dp table
int[] dp = new int[m];
// State transition: first row
dp[0] = grid[0][0];
for (int j = 1; j < m; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
// State transition: the rest of the rows
for (int i = 1; i < n; i++) {
// State transition: first column
dp[0] = dp[0] + grid[i][0];
// State transition: the rest of the columns
for (int j = 1; j < m; j++) {
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
}
}
return dp[m - 1];
}
public static void main(String[] args) {
int[][] grid = {
{ 1, 3, 1, 5 },
{ 2, 2, 4, 2 },
{ 5, 3, 2, 1 },
{ 4, 3, 5, 2 }
};
int n = grid.length, m = grid[0].length;
// Brute force search
int res = minPathSumDFS(grid, n - 1, m - 1);
System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res);
// Memoized search
int[][] mem = new int[n][m];
for (int[] row : mem) {
Arrays.fill(row, -1);
}
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res);
// Dynamic programming
res = minPathSumDP(grid);
System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res);
// Space-optimized dynamic programming
res = minPathSumDPComp(grid);
System.out.println("The minimum path sum from the top left corner to the bottom right corner is " + res);
}
}