hello-algo/codes/python/chapter_tree/avl_tree.py

203 lines
6.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
File: avl_tree.py
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class AVLTree:
"""AVL 树"""
def __init__(self, root: TreeNode | None = None):
"""构造方法"""
self.root = root
def height(self, node: TreeNode | None) -> int:
"""获取节点高度"""
# 空节点高度为 -1 ,叶节点高度为 0
if node is not None:
return node.height
return -1
def __update_height(self, node: TreeNode | None):
"""更新节点高度"""
# 节点高度等于最高子树高度 + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
def balance_factor(self, node: TreeNode | None) -> int:
"""获取平衡因子"""
# 空节点平衡因子为 0
if node is None:
return 0
# 节点平衡因子 = 左子树高度 - 右子树高度
return self.height(node.left) - self.height(node.right)
def __right_rotate(self, node: TreeNode | None) -> TreeNode | None:
"""右旋操作"""
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
child.right = node
node.left = grand_child
# 更新节点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
def __left_rotate(self, node: TreeNode | None) -> TreeNode | None:
"""左旋操作"""
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
child.left = node
node.right = grand_child
# 更新节点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
def __rotate(self, node: TreeNode | None) -> TreeNode | None:
"""执行旋转操作,使该子树重新恢复平衡"""
# 获取节点 node 的平衡因子
balance_factor = self.balance_factor(node)
# 左偏树
if balance_factor > 1:
if self.balance_factor(node.left) >= 0:
# 右旋
return self.__right_rotate(node)
else:
# 先左旋后右旋
node.left = self.__left_rotate(node.left)
return self.__right_rotate(node)
# 右偏树
elif balance_factor < -1:
if self.balance_factor(node.right) <= 0:
# 左旋
return self.__left_rotate(node)
else:
# 先右旋后左旋
node.right = self.__right_rotate(node.right)
return self.__left_rotate(node)
# 平衡树,无需旋转,直接返回
return node
def insert(self, val) -> None:
"""插入节点"""
self.root = self.__insert_helper(self.root, val)
def __insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:
"""递归插入节点(辅助方法)"""
if node is None:
return TreeNode(val)
# 1. 查找插入位置,并插入节点
if val < node.val:
node.left = self.__insert_helper(node.left, val)
elif val > node.val:
node.right = self.__insert_helper(node.right, val)
else:
# 重复节点不插入,直接返回
return node
# 更新节点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
def remove(self, val: int) -> None:
"""删除节点"""
self.root = self.__remove_helper(self.root, val)
def __remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:
"""递归删除节点(辅助方法)"""
if node is None:
return None
# 1. 查找节点,并删除之
if val < node.val:
node.left = self.__remove_helper(node.left, val)
elif val > node.val:
node.right = self.__remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
# 子节点数量 = 0 ,直接删除 node 并返回
if child is None:
return None
# 子节点数量 = 1 ,直接删除 node
else:
node = child
else:
# 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
temp = node.right
while temp.left is not None:
temp = temp.left
node.right = self.__remove_helper(node.right, temp.val)
node.val = temp.val
# 更新节点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
def search(self, val: int) -> TreeNode | None:
"""查找节点"""
cur = self.root
# 循环查找,越过叶节点后跳出
while cur is not None:
# 目标节点在 cur 的右子树中
if cur.val < val:
cur = cur.right
# 目标节点在 cur 的左子树中
elif cur.val > val:
cur = cur.left
# 找到目标节点,跳出循环
else:
break
# 返回目标节点
return cur
"""Driver Code"""
if __name__ == "__main__":
def test_insert(tree: AVLTree, val: int):
tree.insert(val)
print("\n插入节点 {}AVL 树为".format(val))
print_tree(tree.root)
def test_remove(tree: AVLTree, val: int):
tree.remove(val)
print("\n删除节点 {}AVL 树为".format(val))
print_tree(tree.root)
# 初始化空 AVL 树
avl_tree = AVLTree()
# 插入节点
# 请关注插入节点后AVL 树是如何保持平衡的
test_insert(avl_tree, 1)
test_insert(avl_tree, 2)
test_insert(avl_tree, 3)
test_insert(avl_tree, 4)
test_insert(avl_tree, 5)
test_insert(avl_tree, 8)
test_insert(avl_tree, 7)
test_insert(avl_tree, 9)
test_insert(avl_tree, 10)
test_insert(avl_tree, 6)
# 插入重复节点
test_insert(avl_tree, 7)
# 删除节点
# 请关注删除节点后AVL 树是如何保持平衡的
test_remove(avl_tree, 8) # 删除度为 0 的节点
test_remove(avl_tree, 5) # 删除度为 1 的节点
test_remove(avl_tree, 4) # 删除度为 2 的节点
result_node = avl_tree.search(7)
print("\n查找到的节点对象为 {},节点值 = {}".format(result_node, result_node.val))