hello-algo/zh-hant/codes/python/chapter_computational_complexity/time_complexity.py
Yudong Jin 3f4220de81
Bug fixes and improvements (#1380)
* preorder, inorder, postorder -> pre-order, in-order, post-order

* Bug fixes

* Bug fixes

* Update what_is_dsa.md

* Sync zh and zh-hant versions

* Sync zh and zh-hant versions.

* Update performance_evaluation.md and time_complexity.md

* Add @khoaxuantu to the landing page.

* Sync zh and zh-hant versions

* Add @ khoaxuantu to the landing page of zh-hant and en versions.
2024-05-31 16:39:06 +08:00

153 lines
3.8 KiB
Python

"""
File: time_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
def constant(n: int) -> int:
"""常數階"""
count = 0
size = 100000
for _ in range(size):
count += 1
return count
def linear(n: int) -> int:
"""線性階"""
count = 0
for _ in range(n):
count += 1
return count
def array_traversal(nums: list[int]) -> int:
"""線性階(走訪陣列)"""
count = 0
# 迴圈次數與陣列長度成正比
for num in nums:
count += 1
return count
def quadratic(n: int) -> int:
"""平方階"""
count = 0
# 迴圈次數與資料大小 n 成平方關係
for i in range(n):
for j in range(n):
count += 1
return count
def bubble_sort(nums: list[int]) -> int:
"""平方階(泡沫排序)"""
count = 0 # 計數器
# 外迴圈:未排序區間為 [0, i]
for i in range(len(nums) - 1, 0, -1):
# 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for j in range(i):
if nums[j] > nums[j + 1]:
# 交換 nums[j] 與 nums[j + 1]
tmp: int = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # 元素交換包含 3 個單元操作
return count
def exponential(n: int) -> int:
"""指數階(迴圈實現)"""
count = 0
base = 1
# 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
for _ in range(n):
for _ in range(base):
count += 1
base *= 2
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
def exp_recur(n: int) -> int:
"""指數階(遞迴實現)"""
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
def logarithmic(n: int) -> int:
"""對數階(迴圈實現)"""
count = 0
while n > 1:
n = n / 2
count += 1
return count
def log_recur(n: int) -> int:
"""對數階(遞迴實現)"""
if n <= 1:
return 0
return log_recur(n / 2) + 1
def linear_log_recur(n: int) -> int:
"""線性對數階"""
if n <= 1:
return 1
# 一分為二,子問題的規模減小一半
count = linear_log_recur(n // 2) + linear_log_recur(n // 2)
# 當前子問題包含 n 個操作
for _ in range(n):
count += 1
return count
def factorial_recur(n: int) -> int:
"""階乘階(遞迴實現)"""
if n == 0:
return 1
count = 0
# 從 1 個分裂出 n 個
for _ in range(n):
count += factorial_recur(n - 1)
return count
"""Driver Code"""
if __name__ == "__main__":
# 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
n = 8
print("輸入資料大小 n =", n)
count = constant(n)
print("常數階的操作數量 =", count)
count = linear(n)
print("線性階的操作數量 =", count)
count = array_traversal([0] * n)
print("線性階(走訪陣列)的操作數量 =", count)
count = quadratic(n)
print("平方階的操作數量 =", count)
nums = [i for i in range(n, 0, -1)] # [n, n-1, ..., 2, 1]
count = bubble_sort(nums)
print("平方階(泡沫排序)的操作數量 =", count)
count = exponential(n)
print("指數階(迴圈實現)的操作數量 =", count)
count = exp_recur(n)
print("指數階(遞迴實現)的操作數量 =", count)
count = logarithmic(n)
print("對數階(迴圈實現)的操作數量 =", count)
count = log_recur(n)
print("對數階(遞迴實現)的操作數量 =", count)
count = linear_log_recur(n)
print("線性對數階(遞迴實現)的操作數量 =", count)
count = factorial_recur(n)
print("階乘階(遞迴實現)的操作數量 =", count)