mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-28 04:26:28 +08:00
2626de8d0b
introduction, computational complexity.
157 lines
3.8 KiB
JavaScript
157 lines
3.8 KiB
JavaScript
/**
|
|
* File: my_heap.js
|
|
* Created Time: 2023-02-06
|
|
* Author: what-is-me (whatisme@outlook.jp)
|
|
*/
|
|
|
|
const { printHeap } = require('../modules/PrintUtil');
|
|
|
|
/* 最大堆类 */
|
|
class MaxHeap {
|
|
#maxHeap;
|
|
|
|
/* 构造方法,建立空堆或根据输入列表建堆 */
|
|
constructor(nums) {
|
|
// 将列表元素原封不动添加进堆
|
|
this.#maxHeap = nums === undefined ? [] : [...nums];
|
|
// 堆化除叶节点以外的其他所有节点
|
|
for (let i = this.#parent(this.size() - 1); i >= 0; i--) {
|
|
this.#siftDown(i);
|
|
}
|
|
}
|
|
|
|
/* 获取左子节点索引 */
|
|
#left(i) {
|
|
return 2 * i + 1;
|
|
}
|
|
|
|
/* 获取右子节点索引 */
|
|
#right(i) {
|
|
return 2 * i + 2;
|
|
}
|
|
|
|
/* 获取父节点索引 */
|
|
#parent(i) {
|
|
return Math.floor((i - 1) / 2); // 向下整除
|
|
}
|
|
|
|
/* 交换元素 */
|
|
#swap(i, j) {
|
|
const tmp = this.#maxHeap[i];
|
|
this.#maxHeap[i] = this.#maxHeap[j];
|
|
this.#maxHeap[j] = tmp;
|
|
}
|
|
|
|
/* 获取堆大小 */
|
|
size() {
|
|
return this.#maxHeap.length;
|
|
}
|
|
|
|
/* 判断堆是否为空 */
|
|
isEmpty() {
|
|
return this.size() === 0;
|
|
}
|
|
|
|
/* 访问堆顶元素 */
|
|
peek() {
|
|
return this.#maxHeap[0];
|
|
}
|
|
|
|
/* 元素入堆 */
|
|
push(val) {
|
|
// 添加节点
|
|
this.#maxHeap.push(val);
|
|
// 从底至顶堆化
|
|
this.#siftUp(this.size() - 1);
|
|
}
|
|
|
|
/* 从节点 i 开始,从底至顶堆化 */
|
|
#siftUp(i) {
|
|
while (true) {
|
|
// 获取节点 i 的父节点
|
|
const p = this.#parent(i);
|
|
// 当“越过根节点”或“节点无须修复”时,结束堆化
|
|
if (p < 0 || this.#maxHeap[i] <= this.#maxHeap[p]) break;
|
|
// 交换两节点
|
|
this.#swap(i, p);
|
|
// 循环向上堆化
|
|
i = p;
|
|
}
|
|
}
|
|
|
|
/* 元素出堆 */
|
|
pop() {
|
|
// 判空处理
|
|
if (this.isEmpty()) throw new Error('堆为空');
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
this.#swap(0, this.size() - 1);
|
|
// 删除节点
|
|
const val = this.#maxHeap.pop();
|
|
// 从顶至底堆化
|
|
this.#siftDown(0);
|
|
// 返回堆顶元素
|
|
return val;
|
|
}
|
|
|
|
/* 从节点 i 开始,从顶至底堆化 */
|
|
#siftDown(i) {
|
|
while (true) {
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
const l = this.#left(i),
|
|
r = this.#right(i);
|
|
let ma = i;
|
|
if (l < this.size() && this.#maxHeap[l] > this.#maxHeap[ma]) ma = l;
|
|
if (r < this.size() && this.#maxHeap[r] > this.#maxHeap[ma]) ma = r;
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
if (ma === i) break;
|
|
// 交换两节点
|
|
this.#swap(i, ma);
|
|
// 循环向下堆化
|
|
i = ma;
|
|
}
|
|
}
|
|
|
|
/* 打印堆(二叉树) */
|
|
print() {
|
|
printHeap(this.#maxHeap);
|
|
}
|
|
|
|
/* 取出堆中元素 */
|
|
getMaxHeap() {
|
|
return this.#maxHeap;
|
|
}
|
|
}
|
|
|
|
/* Driver Code */
|
|
/* 初始化大顶堆 */
|
|
const maxHeap = new MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2]);
|
|
console.log('\n输入列表并建堆后');
|
|
maxHeap.print();
|
|
|
|
/* 获取堆顶元素 */
|
|
let peek = maxHeap.peek();
|
|
console.log(`\n堆顶元素为 ${peek}`);
|
|
|
|
/* 元素入堆 */
|
|
let val = 7;
|
|
maxHeap.push(val);
|
|
console.log(`\n元素 ${val} 入堆后`);
|
|
maxHeap.print();
|
|
|
|
/* 堆顶元素出堆 */
|
|
peek = maxHeap.pop();
|
|
console.log(`\n堆顶元素 ${peek} 出堆后`);
|
|
maxHeap.print();
|
|
|
|
/* 获取堆大小 */
|
|
let size = maxHeap.size();
|
|
console.log(`\n堆元素数量为 ${size}`);
|
|
|
|
/* 判断堆是否为空 */
|
|
let isEmpty = maxHeap.isEmpty();
|
|
console.log(`\n堆是否为空 ${isEmpty}`);
|
|
|
|
|
|
module.exports = {
|
|
MaxHeap,
|
|
};
|