hello-algo/codes/javascript/chapter_dynamic_programming/min_path_sum.js
gaofer f7ab4797bf
feat: add dynamic programming code for JS and TS (#692)
* fix: Correcting typos

* Add JavaScript and TypeScript code of dynamic programming.

* fix: Code Style

* Change ==/!= to ===/!==
* Create const by default, change to let if necessary.

* style fix: Delete unnecessary defined type
2023-08-30 15:27:01 +08:00

121 lines
No EOL
3.5 KiB
JavaScript

/**
* File: min_path_sum.js
* Created Time: 2023-08-23
* Author: Gaofer Chou (gaofer-chou@qq.com)
*/
/* 最小路径和:暴力搜索 */
function minPathSumDFS(grid, i, j) {
// 若为左上角单元格,则终止搜索
if (i === 0 && j === 0) {
return grid[0][0];
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
return Infinity;
}
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
const left = minPathSumDFS(grid, i - 1, j);
const up = minPathSumDFS(grid, i, j - 1);
// 返回从左上角到 (i, j) 的最小路径代价
return Math.min(left, up) + grid[i][j];
}
/* 最小路径和:记忆化搜索 */
function minPathSumDFSMem(grid, mem, i, j) {
// 若为左上角单元格,则终止搜索
if (i === 0 && j === 0) {
return grid[0][0];
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
return Infinity;
}
// 若已有记录,则直接返回
if (mem[i][j] !== -1) {
return mem[i][j];
}
// 左边和上边单元格的最小路径代价
const left = minPathSumDFSMem(grid, mem, i - 1, j);
const up = minPathSumDFSMem(grid, mem, i, j - 1);
// 记录并返回左上角到 (i, j) 的最小路径代价
mem[i][j] = Math.min(left, up) + grid[i][j];
return mem[i][j];
}
/* 最小路径和:动态规划 */
function minPathSumDP(grid) {
const n = grid.length,
m = grid[0].length;
// 初始化 dp 表
const dp = Array.from({ length: n }, () =>
Array.from({ length: m }, () => 0)
);
dp[0][0] = grid[0][0];
// 状态转移:首行
for (let j = 1; j < m; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// 状态转移:首列
for (let i = 1; i < n; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// 状态转移:其余行列
for (let i = 1; i < n; i++) {
for (let j = 1; j < m; j++) {
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[n - 1][m - 1];
}
/* 最小路径和:状态压缩后的动态规划 */
function minPathSumDPComp(grid) {
const n = grid.length,
m = grid[0].length;
// 初始化 dp 表
const dp = new Array(m);
// 状态转移:首行
dp[0] = grid[0][0];
for (let j = 1; j < m; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
// 状态转移:其余行
for (let i = 1; i < n; i++) {
// 状态转移:首列
dp[0] = dp[0] + grid[i][0];
// 状态转移:其余列
for (let j = 1; j < m; j++) {
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
}
}
return dp[m - 1];
}
/* Driver Code */
const grid = [
[1, 3, 1, 5],
[2, 2, 4, 2],
[5, 3, 2, 1],
[4, 3, 5, 2],
]
const n = grid.length,
m = grid[0].length;
// 暴力搜索
let res = minPathSumDFS(grid, n - 1, m - 1);
console.log(`从左上角到右下角的最小路径和为 ${res}`);
// 记忆化搜索
const mem = Array.from({ length: n }, () =>
Array.from({ length: m }, () => -1)
);
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
console.log(`从左上角到右下角的最小路径和为 ${res}`);
// 动态规划
res = minPathSumDP(grid);
console.log(`从左上角到右下角的最小路径和为 ${res}`);
// 状态压缩后的动态规划
res = minPathSumDPComp(grid);
console.log(`从左上角到右下角的最小路径和为 ${res}`);