mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 02:06:29 +08:00
1c0f350ad6
* Add the intial translation of code of all the languages * test * revert * Remove * Add Python and Java code for EN version
40 lines
1.2 KiB
Java
40 lines
1.2 KiB
Java
/**
|
|
* File: top_k.java
|
|
* Created Time: 2023-06-12
|
|
* Author: krahets (krahets@163.com)
|
|
*/
|
|
|
|
package chapter_heap;
|
|
|
|
import utils.*;
|
|
import java.util.*;
|
|
|
|
public class top_k {
|
|
/* Using heap to find the largest k elements in an array */
|
|
static Queue<Integer> topKHeap(int[] nums, int k) {
|
|
// Initialize min-heap
|
|
Queue<Integer> heap = new PriorityQueue<Integer>();
|
|
// Enter the first k elements of the array into the heap
|
|
for (int i = 0; i < k; i++) {
|
|
heap.offer(nums[i]);
|
|
}
|
|
// From the k+1th element, keep the heap length as k
|
|
for (int i = k; i < nums.length; i++) {
|
|
// If the current element is larger than the heap top element, remove the heap top element and enter the current element into the heap
|
|
if (nums[i] > heap.peek()) {
|
|
heap.poll();
|
|
heap.offer(nums[i]);
|
|
}
|
|
}
|
|
return heap;
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
int[] nums = { 1, 7, 6, 3, 2 };
|
|
int k = 3;
|
|
|
|
Queue<Integer> res = topKHeap(nums, k);
|
|
System.out.println("The largest " + k + " elements are");
|
|
PrintUtil.printHeap(res);
|
|
}
|
|
}
|