mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 14:16:28 +08:00
6dc21691ed
unify the coding style.
231 lines
5.9 KiB
Java
231 lines
5.9 KiB
Java
/**
|
||
* File: time_complexity.cs
|
||
* Created Time: 2022-12-23
|
||
* Author: haptear (haptear@hotmail.com)
|
||
*/
|
||
|
||
using NUnit.Framework;
|
||
|
||
namespace hello_algo.chapter_computational_complexity;
|
||
|
||
public class time_complexity
|
||
{
|
||
void algorithm(int n)
|
||
{
|
||
int a = 1; // +0(技巧 1)
|
||
a = a + n; // +0(技巧 1)
|
||
// +n(技巧 2)
|
||
for (int i = 0; i < 5 * n + 1; i++)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
// +n*n(技巧 3)
|
||
for (int i = 0; i < 2 * n; i++)
|
||
{
|
||
for (int j = 0; j < n + 1; j++)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
}
|
||
}
|
||
|
||
// 算法 A 时间复杂度:常数阶
|
||
void algorithm_A(int n)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
// 算法 B 时间复杂度:线性阶
|
||
void algorithm_B(int n)
|
||
{
|
||
for (int i = 0; i < n; i++)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
}
|
||
// 算法 C 时间复杂度:常数阶
|
||
void algorithm_C(int n)
|
||
{
|
||
for (int i = 0; i < 1000000; i++)
|
||
{
|
||
Console.WriteLine(0);
|
||
}
|
||
}
|
||
|
||
/* 常数阶 */
|
||
static int constant(int n)
|
||
{
|
||
int count = 0;
|
||
int size = 100000;
|
||
for (int i = 0; i < size; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
|
||
/* 线性阶 */
|
||
static int linear(int n)
|
||
{
|
||
int count = 0;
|
||
for (int i = 0; i < n; i++)
|
||
count++;
|
||
return count;
|
||
}
|
||
|
||
/* 线性阶(遍历数组) */
|
||
static int arrayTraversal(int[] nums)
|
||
{
|
||
int count = 0;
|
||
// 循环次数与数组长度成正比
|
||
foreach (int num in nums)
|
||
{
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 平方阶 */
|
||
static int quadratic(int n)
|
||
{
|
||
int count = 0;
|
||
// 循环次数与数组长度成平方关系
|
||
for (int i = 0; i < n; i++)
|
||
{
|
||
for (int j = 0; j < n; j++)
|
||
{
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 平方阶(冒泡排序) */
|
||
static int bubbleSort(int[] nums)
|
||
{
|
||
int count = 0; // 计数器
|
||
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
||
for (int i = nums.Length - 1; i > 0; i--)
|
||
{
|
||
// 内循环:冒泡操作
|
||
for (int j = 0; j < i; j++)
|
||
{
|
||
if (nums[j] > nums[j + 1])
|
||
{
|
||
// 交换 nums[j] 与 nums[j + 1]
|
||
int tmp = nums[j];
|
||
nums[j] = nums[j + 1];
|
||
nums[j + 1] = tmp;
|
||
count += 3; // 元素交换包含 3 个单元操作
|
||
}
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 指数阶(循环实现) */
|
||
static int exponential(int n)
|
||
{
|
||
int count = 0, bas = 1;
|
||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||
for (int i = 0; i < n; i++)
|
||
{
|
||
for (int j = 0; j < bas; j++)
|
||
{
|
||
count++;
|
||
}
|
||
bas *= 2;
|
||
}
|
||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||
return count;
|
||
}
|
||
|
||
/* 指数阶(递归实现) */
|
||
static int expRecur(int n)
|
||
{
|
||
if (n == 1) return 1;
|
||
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
||
}
|
||
|
||
/* 对数阶(循环实现) */
|
||
static int logarithmic(float n)
|
||
{
|
||
int count = 0;
|
||
while (n > 1)
|
||
{
|
||
n = n / 2;
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 对数阶(递归实现) */
|
||
static int logRecur(float n)
|
||
{
|
||
if (n <= 1) return 0;
|
||
return logRecur(n / 2) + 1;
|
||
}
|
||
|
||
/* 线性对数阶 */
|
||
static int linearLogRecur(float n)
|
||
{
|
||
if (n <= 1) return 1;
|
||
int count = linearLogRecur(n / 2) +
|
||
linearLogRecur(n / 2);
|
||
for (int i = 0; i < n; i++)
|
||
{
|
||
count++;
|
||
}
|
||
return count;
|
||
}
|
||
|
||
/* 阶乘阶(递归实现) */
|
||
static int factorialRecur(int n)
|
||
{
|
||
if (n == 0) return 1;
|
||
int count = 0;
|
||
// 从 1 个分裂出 n 个
|
||
for (int i = 0; i < n; i++)
|
||
{
|
||
count += factorialRecur(n - 1);
|
||
}
|
||
return count;
|
||
}
|
||
|
||
[Test]
|
||
public void Test()
|
||
{
|
||
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
||
int n = 8;
|
||
Console.WriteLine("输入数据大小 n = " + n);
|
||
|
||
int count = constant(n);
|
||
Console.WriteLine("常数阶的计算操作数量 = " + count);
|
||
|
||
count = linear(n);
|
||
Console.WriteLine("线性阶的计算操作数量 = " + count);
|
||
count = arrayTraversal(new int[n]);
|
||
Console.WriteLine("线性阶(遍历数组)的计算操作数量 = " + count);
|
||
|
||
count = quadratic(n);
|
||
Console.WriteLine("平方阶的计算操作数量 = " + count);
|
||
int[] nums = new int[n];
|
||
for (int i = 0; i < n; i++)
|
||
nums[i] = n - i; // [n,n-1,...,2,1]
|
||
count = bubbleSort(nums);
|
||
Console.WriteLine("平方阶(冒泡排序)的计算操作数量 = " + count);
|
||
|
||
count = exponential(n);
|
||
Console.WriteLine("指数阶(循环实现)的计算操作数量 = " + count);
|
||
count = expRecur(n);
|
||
Console.WriteLine("指数阶(递归实现)的计算操作数量 = " + count);
|
||
|
||
count = logarithmic((float)n);
|
||
Console.WriteLine("对数阶(循环实现)的计算操作数量 = " + count);
|
||
count = logRecur((float)n);
|
||
Console.WriteLine("对数阶(递归实现)的计算操作数量 = " + count);
|
||
|
||
count = linearLogRecur((float)n);
|
||
Console.WriteLine("线性对数阶(递归实现)的计算操作数量 = " + count);
|
||
|
||
count = factorialRecur(n);
|
||
Console.WriteLine("阶乘阶(递归实现)的计算操作数量 = " + count);
|
||
}
|
||
}
|