hello-algo/codes/csharp/chapter_heap/my_heap.cs
Yudong Jin e720aa2d24
feat: Revised the book (#978)
* Sync recent changes to the revised Word.

* Revised the preface chapter

* Revised the introduction chapter

* Revised the computation complexity chapter

* Revised the chapter data structure

* Revised the chapter array and linked list

* Revised the chapter stack and queue

* Revised the chapter hashing

* Revised the chapter tree

* Revised the chapter heap

* Revised the chapter graph

* Revised the chapter searching

* Reivised the sorting chapter

* Revised the divide and conquer chapter

* Revised the chapter backtacking

* Revised the DP chapter

* Revised the greedy chapter

* Revised the appendix chapter

* Revised the preface chapter doubly

* Revised the figures
2023-12-02 06:21:34 +08:00

160 lines
4.1 KiB
C#

/**
* File: my_heap.cs
* Created Time: 2023-02-06
* Author: zjkung1123 (zjkung1123@gmail.com)
*/
namespace hello_algo.chapter_heap;
/* 大顶堆 */
class MaxHeap {
// 使用列表而非数组,这样无须考虑扩容问题
List<int> maxHeap;
/* 构造函数,建立空堆 */
public MaxHeap() {
maxHeap = [];
}
/* 构造函数,根据输入列表建堆 */
public MaxHeap(IEnumerable<int> nums) {
// 将列表元素原封不动添加进堆
maxHeap = new List<int>(nums);
// 堆化除叶节点以外的其他所有节点
var size = Parent(this.Size() - 1);
for (int i = size; i >= 0; i--) {
SiftDown(i);
}
}
/* 获取左子节点索引 */
int Left(int i) {
return 2 * i + 1;
}
/* 获取右子节点索引 */
int Right(int i) {
return 2 * i + 2;
}
/* 获取父节点索引 */
int Parent(int i) {
return (i - 1) / 2; // 向下整除
}
/* 访问堆顶元素 */
public int Peek() {
return maxHeap[0];
}
/* 元素入堆 */
public void Push(int val) {
// 添加节点
maxHeap.Add(val);
// 从底至顶堆化
SiftUp(Size() - 1);
}
/* 获取堆大小 */
public int Size() {
return maxHeap.Count;
}
/* 判断堆是否为空 */
public bool IsEmpty() {
return Size() == 0;
}
/* 从节点 i 开始,从底至顶堆化 */
void SiftUp(int i) {
while (true) {
// 获取节点 i 的父节点
int p = Parent(i);
// 若“越过根节点”或“节点无须修复”,则结束堆化
if (p < 0 || maxHeap[i] <= maxHeap[p])
break;
// 交换两节点
Swap(i, p);
// 循环向上堆化
i = p;
}
}
/* 元素出堆 */
public int Pop() {
// 判空处理
if (IsEmpty())
throw new IndexOutOfRangeException();
// 交换根节点与最右叶节点(交换首元素与尾元素)
Swap(0, Size() - 1);
// 删除节点
int val = maxHeap.Last();
maxHeap.RemoveAt(Size() - 1);
// 从顶至底堆化
SiftDown(0);
// 返回堆顶元素
return val;
}
/* 从节点 i 开始,从顶至底堆化 */
void SiftDown(int i) {
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
int l = Left(i), r = Right(i), ma = i;
if (l < Size() && maxHeap[l] > maxHeap[ma])
ma = l;
if (r < Size() && maxHeap[r] > maxHeap[ma])
ma = r;
// 若“节点 i 最大”或“越过叶节点”,则结束堆化
if (ma == i) break;
// 交换两节点
Swap(i, ma);
// 循环向下堆化
i = ma;
}
}
/* 交换元素 */
void Swap(int i, int p) {
(maxHeap[i], maxHeap[p]) = (maxHeap[p], maxHeap[i]);
}
/* 打印堆(二叉树) */
public void Print() {
var queue = new Queue<int>(maxHeap);
PrintUtil.PrintHeap(queue);
}
}
public class my_heap {
[Test]
public void Test() {
/* 初始化大顶堆 */
MaxHeap maxHeap = new([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2]);
Console.WriteLine("\n输入列表并建堆后");
maxHeap.Print();
/* 获取堆顶元素 */
int peek = maxHeap.Peek();
Console.WriteLine($"堆顶元素为 {peek}");
/* 元素入堆 */
int val = 7;
maxHeap.Push(val);
Console.WriteLine($"元素 {val} 入堆后");
maxHeap.Print();
/* 堆顶元素出堆 */
peek = maxHeap.Pop();
Console.WriteLine($"堆顶元素 {peek} 出堆后");
maxHeap.Print();
/* 获取堆大小 */
int size = maxHeap.Size();
Console.WriteLine($"堆元素数量为 {size}");
/* 判断堆是否为空 */
bool isEmpty = maxHeap.IsEmpty();
Console.WriteLine($"堆是否为空 {isEmpty}");
}
}