hello-algo/en/codes/cpp/chapter_tree/avl_tree.cpp

233 lines
7.2 KiB
C++

/**
* File: avl_tree.cpp
* Created Time: 2023-02-03
* Author: what-is-me (whatisme@outlook.jp)
*/
#include "../utils/common.hpp"
/* AVL tree */
class AVLTree {
private:
/* Update node height */
void updateHeight(TreeNode *node) {
// Node height equals the height of the tallest subtree + 1
node->height = max(height(node->left), height(node->right)) + 1;
}
/* Right rotation operation */
TreeNode *rightRotate(TreeNode *node) {
TreeNode *child = node->left;
TreeNode *grandChild = child->right;
// Rotate node to the right around child
child->right = node;
node->left = grandChild;
// Update node height
updateHeight(node);
updateHeight(child);
// Return the root of the subtree after rotation
return child;
}
/* Left rotation operation */
TreeNode *leftRotate(TreeNode *node) {
TreeNode *child = node->right;
TreeNode *grandChild = child->left;
// Rotate node to the left around child
child->left = node;
node->right = grandChild;
// Update node height
updateHeight(node);
updateHeight(child);
// Return the root of the subtree after rotation
return child;
}
/* Perform rotation operation to restore balance to the subtree */
TreeNode *rotate(TreeNode *node) {
// Get the balance factor of node
int _balanceFactor = balanceFactor(node);
// Left-leaning tree
if (_balanceFactor > 1) {
if (balanceFactor(node->left) >= 0) {
// Right rotation
return rightRotate(node);
} else {
// First left rotation then right rotation
node->left = leftRotate(node->left);
return rightRotate(node);
}
}
// Right-leaning tree
if (_balanceFactor < -1) {
if (balanceFactor(node->right) <= 0) {
// Left rotation
return leftRotate(node);
} else {
// First right rotation then left rotation
node->right = rightRotate(node->right);
return leftRotate(node);
}
}
// Balanced tree, no rotation needed, return
return node;
}
/* Recursively insert node (helper method) */
TreeNode *insertHelper(TreeNode *node, int val) {
if (node == nullptr)
return new TreeNode(val);
/* 1. Find insertion position and insert node */
if (val < node->val)
node->left = insertHelper(node->left, val);
else if (val > node->val)
node->right = insertHelper(node->right, val);
else
return node; // Do not insert duplicate nodes, return
updateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to the subtree */
node = rotate(node);
// Return the root node of the subtree
return node;
}
/* Recursively remove node (helper method) */
TreeNode *removeHelper(TreeNode *node, int val) {
if (node == nullptr)
return nullptr;
/* 1. Find and remove the node */
if (val < node->val)
node->left = removeHelper(node->left, val);
else if (val > node->val)
node->right = removeHelper(node->right, val);
else {
if (node->left == nullptr || node->right == nullptr) {
TreeNode *child = node->left != nullptr ? node->left : node->right;
// Number of child nodes = 0, remove node and return
if (child == nullptr) {
delete node;
return nullptr;
}
// Number of child nodes = 1, remove node
else {
delete node;
node = child;
}
} else {
// Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it
TreeNode *temp = node->right;
while (temp->left != nullptr) {
temp = temp->left;
}
int tempVal = temp->val;
node->right = removeHelper(node->right, temp->val);
node->val = tempVal;
}
}
updateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to the subtree */
node = rotate(node);
// Return the root node of the subtree
return node;
}
public:
TreeNode *root; // Root node
/* Get node height */
int height(TreeNode *node) {
// Empty node height is -1, leaf node height is 0
return node == nullptr ? -1 : node->height;
}
/* Get balance factor */
int balanceFactor(TreeNode *node) {
// Empty node balance factor is 0
if (node == nullptr)
return 0;
// Node balance factor = left subtree height - right subtree height
return height(node->left) - height(node->right);
}
/* Insert node */
void insert(int val) {
root = insertHelper(root, val);
}
/* Remove node */
void remove(int val) {
root = removeHelper(root, val);
}
/* Search node */
TreeNode *search(int val) {
TreeNode *cur = root;
// Loop find, break after passing leaf nodes
while (cur != nullptr) {
// Target node is in cur's right subtree
if (cur->val < val)
cur = cur->right;
// Target node is in cur's left subtree
else if (cur->val > val)
cur = cur->left;
// Found target node, break loop
else
break;
}
// Return target node
return cur;
}
/*Constructor*/
AVLTree() : root(nullptr) {
}
/*Destructor*/
~AVLTree() {
freeMemoryTree(root);
}
};
void testInsert(AVLTree &tree, int val) {
tree.insert(val);
cout << "\nAfter inserting node " << val << ", the AVL tree is" << endl;
printTree(tree.root);
}
void testRemove(AVLTree &tree, int val) {
tree.remove(val);
cout << "\nAfter removing node " << val << ", the AVL tree is" << endl;
printTree(tree.root);
}
/* Driver Code */
int main() {
/* Initialize empty AVL tree */
AVLTree avlTree;
/* Insert node */
// Notice how the AVL tree maintains balance after inserting nodes
testInsert(avlTree, 1);
testInsert(avlTree, 2);
testInsert(avlTree, 3);
testInsert(avlTree, 4);
testInsert(avlTree, 5);
testInsert(avlTree, 8);
testInsert(avlTree, 7);
testInsert(avlTree, 9);
testInsert(avlTree, 10);
testInsert(avlTree, 6);
/* Insert duplicate node */
testInsert(avlTree, 7);
/* Remove node */
// Notice how the AVL tree maintains balance after removing nodes
testRemove(avlTree, 8); // Remove node with degree 0
testRemove(avlTree, 5); // Remove node with degree 1
testRemove(avlTree, 4); // Remove node with degree 2
/* Search node */
TreeNode *node = avlTree.search(7);
cout << "\nThe found node object is " << node << ", node value =" << node->val << endl;
}