hello-algo/codes/dart/chapter_dynamic_programming/min_path_sum.dart
2023-10-14 03:25:11 +08:00

120 lines
3.5 KiB
Dart
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* File: min_path_sum.dart
* Created Time: 2023-08-11
* Author: liuyuxin (gvenusleo@gmail.com)
*/
import 'dart:math';
/* 最小路径和:暴力搜索 */
int minPathSumDFS(List<List<int>> grid, int i, int j) {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0];
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
// 在 Dart 中int 类型是固定范围的整数,不存在表示“无穷大”的值
return BigInt.from(2).pow(31).toInt();
}
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
int up = minPathSumDFS(grid, i - 1, j);
int left = minPathSumDFS(grid, i, j - 1);
// 返回从左上角到 (i, j) 的最小路径代价
return min(left, up) + grid[i][j];
}
/* 最小路径和:记忆化搜索 */
int minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0];
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
// 在 Dart 中int 类型是固定范围的整数,不存在表示“无穷大”的值
return BigInt.from(2).pow(31).toInt();
}
// 若已有记录,则直接返回
if (mem[i][j] != -1) {
return mem[i][j];
}
// 左边和上边单元格的最小路径代价
int up = minPathSumDFSMem(grid, mem, i - 1, j);
int left = minPathSumDFSMem(grid, mem, i, j - 1);
// 记录并返回左上角到 (i, j) 的最小路径代价
mem[i][j] = min(left, up) + grid[i][j];
return mem[i][j];
}
/* 最小路径和:动态规划 */
int minPathSumDP(List<List<int>> grid) {
int n = grid.length, m = grid[0].length;
// 初始化 dp 表
List<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));
dp[0][0] = grid[0][0];
// 状态转移:首行
for (int j = 1; j < m; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// 状态转移:首列
for (int i = 1; i < n; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// 状态转移:其余行列
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[n - 1][m - 1];
}
/* 最小路径和:空间优化后的动态规划 */
int minPathSumDPComp(List<List<int>> grid) {
int n = grid.length, m = grid[0].length;
// 初始化 dp 表
List<int> dp = List.filled(m, 0);
dp[0] = grid[0][0];
for (int j = 1; j < m; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
// 状态转移:其余行
for (int i = 1; i < n; i++) {
// 状态转移:首列
dp[0] = dp[0] + grid[i][0];
// 状态转移:其余列
for (int j = 1; j < m; j++) {
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
}
}
return dp[m - 1];
}
/* Driver Code */
void main() {
List<List<int>> grid = [
[1, 3, 1, 5],
[2, 2, 4, 2],
[5, 3, 2, 1],
[4, 3, 5, 2],
];
int n = grid.length, m = grid[0].length;
// 暴力搜索
int res = minPathSumDFS(grid, n - 1, m - 1);
print("从左上角到右下角的做小路径和为 $res");
// 记忆化搜索
List<List<int>> mem = List.generate(n, (i) => List.filled(m, -1));
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
print("从左上角到右下角的做小路径和为 $res");
// 动态规划
res = minPathSumDP(grid);
print("从左上角到右下角的做小路径和为 $res");
// 空间优化后的动态规划
res = minPathSumDPComp(grid);
print("从左上角到右下角的做小路径和为 $res");
}