mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-24 11:06:29 +08:00
e720aa2d24
* Sync recent changes to the revised Word. * Revised the preface chapter * Revised the introduction chapter * Revised the computation complexity chapter * Revised the chapter data structure * Revised the chapter array and linked list * Revised the chapter stack and queue * Revised the chapter hashing * Revised the chapter tree * Revised the chapter heap * Revised the chapter graph * Revised the chapter searching * Reivised the sorting chapter * Revised the divide and conquer chapter * Revised the chapter backtacking * Revised the DP chapter * Revised the greedy chapter * Revised the appendix chapter * Revised the preface chapter doubly * Revised the figures
116 lines
3.3 KiB
Dart
116 lines
3.3 KiB
Dart
/**
|
|
* File: knapsack.dart
|
|
* Created Time: 2023-08-11
|
|
* Author: liuyuxin (gvenusleo@gmail.com)
|
|
*/
|
|
|
|
import 'dart:math';
|
|
|
|
/* 0-1 背包:暴力搜索 */
|
|
int knapsackDFS(List<int> wgt, List<int> val, int i, int c) {
|
|
// 若已选完所有物品或背包无剩余容量,则返回价值 0
|
|
if (i == 0 || c == 0) {
|
|
return 0;
|
|
}
|
|
// 若超过背包容量,则只能选择不放入背包
|
|
if (wgt[i - 1] > c) {
|
|
return knapsackDFS(wgt, val, i - 1, c);
|
|
}
|
|
// 计算不放入和放入物品 i 的最大价值
|
|
int no = knapsackDFS(wgt, val, i - 1, c);
|
|
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
|
|
// 返回两种方案中价值更大的那一个
|
|
return max(no, yes);
|
|
}
|
|
|
|
/* 0-1 背包:记忆化搜索 */
|
|
int knapsackDFSMem(
|
|
List<int> wgt,
|
|
List<int> val,
|
|
List<List<int>> mem,
|
|
int i,
|
|
int c,
|
|
) {
|
|
// 若已选完所有物品或背包无剩余容量,则返回价值 0
|
|
if (i == 0 || c == 0) {
|
|
return 0;
|
|
}
|
|
// 若已有记录,则直接返回
|
|
if (mem[i][c] != -1) {
|
|
return mem[i][c];
|
|
}
|
|
// 若超过背包容量,则只能选择不放入背包
|
|
if (wgt[i - 1] > c) {
|
|
return knapsackDFSMem(wgt, val, mem, i - 1, c);
|
|
}
|
|
// 计算不放入和放入物品 i 的最大价值
|
|
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
|
|
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
|
|
// 记录并返回两种方案中价值更大的那一个
|
|
mem[i][c] = max(no, yes);
|
|
return mem[i][c];
|
|
}
|
|
|
|
/* 0-1 背包:动态规划 */
|
|
int knapsackDP(List<int> wgt, List<int> val, int cap) {
|
|
int n = wgt.length;
|
|
// 初始化 dp 表
|
|
List<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));
|
|
// 状态转移
|
|
for (int i = 1; i <= n; i++) {
|
|
for (int c = 1; c <= cap; c++) {
|
|
if (wgt[i - 1] > c) {
|
|
// 若超过背包容量,则不选物品 i
|
|
dp[i][c] = dp[i - 1][c];
|
|
} else {
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
|
|
}
|
|
}
|
|
}
|
|
return dp[n][cap];
|
|
}
|
|
|
|
/* 0-1 背包:空间优化后的动态规划 */
|
|
int knapsackDPComp(List<int> wgt, List<int> val, int cap) {
|
|
int n = wgt.length;
|
|
// 初始化 dp 表
|
|
List<int> dp = List.filled(cap + 1, 0);
|
|
// 状态转移
|
|
for (int i = 1; i <= n; i++) {
|
|
// 倒序遍历
|
|
for (int c = cap; c >= 1; c--) {
|
|
if (wgt[i - 1] <= c) {
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
|
}
|
|
}
|
|
}
|
|
return dp[cap];
|
|
}
|
|
|
|
/* Driver Code */
|
|
void main() {
|
|
List<int> wgt = [10, 20, 30, 40, 50];
|
|
List<int> val = [50, 120, 150, 210, 240];
|
|
int cap = 50;
|
|
int n = wgt.length;
|
|
|
|
// 暴力搜索
|
|
int res = knapsackDFS(wgt, val, n, cap);
|
|
print("不超过背包容量的最大物品价值为 $res");
|
|
|
|
// 记忆化搜索
|
|
List<List<int>> mem =
|
|
List.generate(n + 1, (index) => List.filled(cap + 1, -1));
|
|
res = knapsackDFSMem(wgt, val, mem, n, cap);
|
|
print("不超过背包容量的最大物品价值为 $res");
|
|
|
|
// 动态规划
|
|
res = knapsackDP(wgt, val, cap);
|
|
print("不超过背包容量的最大物品价值为 $res");
|
|
|
|
// 空间优化后的动态规划
|
|
res = knapsackDPComp(wgt, val, cap);
|
|
print("不超过背包容量的最大物品价值为 $res");
|
|
}
|