4.3 List¶
A "list" is an abstract data structure concept that represents an ordered collection of elements, supporting operations such as element access, modification, addition, deletion, and traversal, without requiring users to consider capacity limitations. Lists can be implemented based on linked lists or arrays.
- A linked list inherently serves as a list, supporting operations for adding, deleting, searching, and modifying elements, with the flexibility to dynamically adjust its size.
- Arrays also support these operations, but due to their immutable length, they can be considered as a list with a length limit.
When implementing lists using arrays, the immutability of length reduces the practicality of the list. This is because predicting the amount of data to be stored in advance is often challenging, making it difficult to choose an appropriate list length. If the length is too small, it may not meet the requirements; if too large, it may waste memory space.
To solve this problem, we can implement lists using a "dynamic array." It inherits the advantages of arrays and can dynamically expand during program execution.
In fact, many programming languages' standard libraries implement lists using dynamic arrays, such as Python's list
, Java's ArrayList
, C++'s vector
, and C#'s List
. In the following discussion, we will consider "list" and "dynamic array" as synonymous concepts.
4.3.1 Common list operations¶
1. Initializing a list¶
We typically use two initialization methods: "without initial values" and "with initial values".
/* Initialize list */
// Without initial values
List<Integer> nums1 = new ArrayList<>();
// With initial values (note the element type should be the wrapper class Integer[] for int[])
Integer[] numbers = new Integer[] { 1, 3, 2, 5, 4 };
List<Integer> nums = new ArrayList<>(Arrays.asList(numbers));
2. Accessing elements¶
Lists are essentially arrays, thus they can access and update elements in \(O(1)\) time, which is very efficient.
3. Inserting and removing elements¶
Compared to arrays, lists offer more flexibility in adding and removing elements. While adding elements to the end of a list is an \(O(1)\) operation, the efficiency of inserting and removing elements elsewhere in the list remains the same as in arrays, with a time complexity of \(O(n)\).
/* Clear list */
nums.clear();
/* Append elements at the end */
nums.push_back(1);
nums.push_back(3);
nums.push_back(2);
nums.push_back(5);
nums.push_back(4);
/* Insert element in the middle */
nums.insert(nums.begin() + 3, 6); // Insert number 6 at index 3
/* Remove elements */
nums.erase(nums.begin() + 3); // Remove the element at index 3
/* Clear list */
nums = nil
/* Append elements at the end */
nums = append(nums, 1)
nums = append(nums, 3)
nums = append(nums, 2)
nums = append(nums, 5)
nums = append(nums, 4)
/* Insert element in the middle */
nums = append(nums[:3], append([]int{6}, nums[3:]...)...) // Insert number 6 at index 3
/* Remove elements */
nums = append(nums[:3], nums[4:]...) // Remove the element at index 3
/* Clear list */
nums.removeAll()
/* Append elements at the end */
nums.append(1)
nums.append(3)
nums.append(2)
nums.append(5)
nums.append(4)
/* Insert element in the middle */
nums.insert(6, at: 3) // Insert number 6 at index 3
/* Remove elements */
nums.remove(at: 3) // Remove the element at index 3
// Clear list
nums.clearRetainingCapacity();
// Append elements at the end
try nums.append(1);
try nums.append(3);
try nums.append(2);
try nums.append(5);
try nums.append(4);
// Insert element in the middle
try nums.insert(3, 6); // Insert number 6 at index 3
// Remove elements
_ = nums.orderedRemove(3); // Remove the element at index 3
4. Iterating the list¶
Similar to arrays, lists can be iterated either by using indices or by directly iterating through each element.
5. Concatenating lists¶
Given a new list nums1
, we can append it to the end of the original list.
6. Sorting the list¶
Once the list is sorted, we can employ algorithms commonly used in array-related algorithm problems, such as "binary search" and "two-pointer" algorithms.
4.3.2 List implementation¶
Many programming languages come with built-in lists, including Java, C++, Python, etc. Their implementations tend to be intricate, featuring carefully considered settings for various parameters, like initial capacity and expansion factors. Readers who are curious can delve into the source code for further learning.
To enhance our understanding of how lists work, we will attempt to implement a simplified version of a list, focusing on three crucial design aspects:
- Initial capacity: Choose a reasonable initial capacity for the array. In this example, we choose 10 as the initial capacity.
- Size recording: Declare a variable
size
to record the current number of elements in the list, updating in real-time with element insertion and deletion. With this variable, we can locate the end of the list and determine whether expansion is needed. - Expansion mechanism: If the list reaches full capacity upon an element insertion, an expansion process is required. This involves creating a larger array based on the expansion factor, and then transferring all elements from the current array to the new one. In this example, we stipulate that the array size should double with each expansion.
class MyList:
"""列表类"""
def __init__(self):
"""构造方法"""
self._capacity: int = 10 # 列表容量
self._arr: list[int] = [0] * self._capacity # 数组(存储列表元素)
self._size: int = 0 # 列表长度(当前元素数量)
self._extend_ratio: int = 2 # 每次列表扩容的倍数
def size(self) -> int:
"""获取列表长度(当前元素数量)"""
return self._size
def capacity(self) -> int:
"""获取列表容量"""
return self._capacity
def get(self, index: int) -> int:
"""访问元素"""
# 索引如果越界,则抛出异常,下同
if index < 0 or index >= self._size:
raise IndexError("索引越界")
return self._arr[index]
def set(self, num: int, index: int):
"""更新元素"""
if index < 0 or index >= self._size:
raise IndexError("索引越界")
self._arr[index] = num
def add(self, num: int):
"""在尾部添加元素"""
# 元素数量超出容量时,触发扩容机制
if self.size() == self.capacity():
self.extend_capacity()
self._arr[self._size] = num
self._size += 1
def insert(self, num: int, index: int):
"""在中间插入元素"""
if index < 0 or index >= self._size:
raise IndexError("索引越界")
# 元素数量超出容量时,触发扩容机制
if self._size == self.capacity():
self.extend_capacity()
# 将索引 index 以及之后的元素都向后移动一位
for j in range(self._size - 1, index - 1, -1):
self._arr[j + 1] = self._arr[j]
self._arr[index] = num
# 更新元素数量
self._size += 1
def remove(self, index: int) -> int:
"""删除元素"""
if index < 0 or index >= self._size:
raise IndexError("索引越界")
num = self._arr[index]
# 将索引 index 之后的元素都向前移动一位
for j in range(index, self._size - 1):
self._arr[j] = self._arr[j + 1]
# 更新元素数量
self._size -= 1
# 返回被删除的元素
return num
def extend_capacity(self):
"""列表扩容"""
# 新建一个长度为原数组 _extend_ratio 倍的新数组,并将原数组复制到新数组
self._arr = self._arr + [0] * self.capacity() * (self._extend_ratio - 1)
# 更新列表容量
self._capacity = len(self._arr)
def to_array(self) -> list[int]:
"""返回有效长度的列表"""
return self._arr[: self._size]
/* 列表类 */
class MyList {
private:
int *arr; // 数组(存储列表元素)
int arrCapacity = 10; // 列表容量
int arrSize = 0; // 列表长度(当前元素数量)
int extendRatio = 2; // 每次列表扩容的倍数
public:
/* 构造方法 */
MyList() {
arr = new int[arrCapacity];
}
/* 析构方法 */
~MyList() {
delete[] arr;
}
/* 获取列表长度(当前元素数量)*/
int size() {
return arrSize;
}
/* 获取列表容量 */
int capacity() {
return arrCapacity;
}
/* 访问元素 */
int get(int index) {
// 索引如果越界,则抛出异常,下同
if (index < 0 || index >= size())
throw out_of_range("索引越界");
return arr[index];
}
/* 更新元素 */
void set(int index, int num) {
if (index < 0 || index >= size())
throw out_of_range("索引越界");
arr[index] = num;
}
/* 在尾部添加元素 */
void add(int num) {
// 元素数量超出容量时,触发扩容机制
if (size() == capacity())
extendCapacity();
arr[size()] = num;
// 更新元素数量
arrSize++;
}
/* 在中间插入元素 */
void insert(int index, int num) {
if (index < 0 || index >= size())
throw out_of_range("索引越界");
// 元素数量超出容量时,触发扩容机制
if (size() == capacity())
extendCapacity();
// 将索引 index 以及之后的元素都向后移动一位
for (int j = size() - 1; j >= index; j--) {
arr[j + 1] = arr[j];
}
arr[index] = num;
// 更新元素数量
arrSize++;
}
/* 删除元素 */
int remove(int index) {
if (index < 0 || index >= size())
throw out_of_range("索引越界");
int num = arr[index];
// 将索引 index 之后的元素都向前移动一位
for (int j = index; j < size() - 1; j++) {
arr[j] = arr[j + 1];
}
// 更新元素数量
arrSize--;
// 返回被删除的元素
return num;
}
/* 列表扩容 */
void extendCapacity() {
// 新建一个长度为原数组 extendRatio 倍的新数组
int newCapacity = capacity() * extendRatio;
int *tmp = arr;
arr = new int[newCapacity];
// 将原数组中的所有元素复制到新数组
for (int i = 0; i < size(); i++) {
arr[i] = tmp[i];
}
// 释放内存
delete[] tmp;
arrCapacity = newCapacity;
}
/* 将列表转换为 Vector 用于打印 */
vector<int> toVector() {
// 仅转换有效长度范围内的列表元素
vector<int> vec(size());
for (int i = 0; i < size(); i++) {
vec[i] = arr[i];
}
return vec;
}
};
/* 列表类 */
class MyList {
private int[] arr; // 数组(存储列表元素)
private int capacity = 10; // 列表容量
private int size = 0; // 列表长度(当前元素数量)
private int extendRatio = 2; // 每次列表扩容的倍数
/* 构造方法 */
public MyList() {
arr = new int[capacity];
}
/* 获取列表长度(当前元素数量) */
public int size() {
return size;
}
/* 获取列表容量 */
public int capacity() {
return capacity;
}
/* 访问元素 */
public int get(int index) {
// 索引如果越界,则抛出异常,下同
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException("索引越界");
return arr[index];
}
/* 更新元素 */
public void set(int index, int num) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException("索引越界");
arr[index] = num;
}
/* 在尾部添加元素 */
public void add(int num) {
// 元素数量超出容量时,触发扩容机制
if (size == capacity())
extendCapacity();
arr[size] = num;
// 更新元素数量
size++;
}
/* 在中间插入元素 */
public void insert(int index, int num) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException("索引越界");
// 元素数量超出容量时,触发扩容机制
if (size == capacity())
extendCapacity();
// 将索引 index 以及之后的元素都向后移动一位
for (int j = size - 1; j >= index; j--) {
arr[j + 1] = arr[j];
}
arr[index] = num;
// 更新元素数量
size++;
}
/* 删除元素 */
public int remove(int index) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException("索引越界");
int num = arr[index];
// 将将索引 index 之后的元素都向前移动一位
for (int j = index; j < size - 1; j++) {
arr[j] = arr[j + 1];
}
// 更新元素数量
size--;
// 返回被删除的元素
return num;
}
/* 列表扩容 */
public void extendCapacity() {
// 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组复制到新数组
arr = Arrays.copyOf(arr, capacity() * extendRatio);
// 更新列表容量
capacity = arr.length;
}
/* 将列表转换为数组 */
public int[] toArray() {
int size = size();
// 仅转换有效长度范围内的列表元素
int[] arr = new int[size];
for (int i = 0; i < size; i++) {
arr[i] = get(i);
}
return arr;
}
}
/* 列表类 */
class MyList {
private int[] arr; // 数组(存储列表元素)
private int arrCapacity = 10; // 列表容量
private int arrSize = 0; // 列表长度(当前元素数量)
private readonly int extendRatio = 2; // 每次列表扩容的倍数
/* 构造方法 */
public MyList() {
arr = new int[arrCapacity];
}
/* 获取列表长度(当前元素数量)*/
public int Size() {
return arrSize;
}
/* 获取列表容量 */
public int Capacity() {
return arrCapacity;
}
/* 访问元素 */
public int Get(int index) {
// 索引如果越界,则抛出异常,下同
if (index < 0 || index >= arrSize)
throw new IndexOutOfRangeException("索引越界");
return arr[index];
}
/* 更新元素 */
public void Set(int index, int num) {
if (index < 0 || index >= arrSize)
throw new IndexOutOfRangeException("索引越界");
arr[index] = num;
}
/* 在尾部添加元素 */
public void Add(int num) {
// 元素数量超出容量时,触发扩容机制
if (arrSize == arrCapacity)
ExtendCapacity();
arr[arrSize] = num;
// 更新元素数量
arrSize++;
}
/* 在中间插入元素 */
public void Insert(int index, int num) {
if (index < 0 || index >= arrSize)
throw new IndexOutOfRangeException("索引越界");
// 元素数量超出容量时,触发扩容机制
if (arrSize == arrCapacity)
ExtendCapacity();
// 将索引 index 以及之后的元素都向后移动一位
for (int j = arrSize - 1; j >= index; j--) {
arr[j + 1] = arr[j];
}
arr[index] = num;
// 更新元素数量
arrSize++;
}
/* 删除元素 */
public int Remove(int index) {
if (index < 0 || index >= arrSize)
throw new IndexOutOfRangeException("索引越界");
int num = arr[index];
// 将将索引 index 之后的元素都向前移动一位
for (int j = index; j < arrSize - 1; j++) {
arr[j] = arr[j + 1];
}
// 更新元素数量
arrSize--;
// 返回被删除的元素
return num;
}
/* 列表扩容 */
public void ExtendCapacity() {
// 新建一个长度为 arrCapacity * extendRatio 的数组,并将原数组复制到新数组
Array.Resize(ref arr, arrCapacity * extendRatio);
// 更新列表容量
arrCapacity = arr.Length;
}
/* 将列表转换为数组 */
public int[] ToArray() {
// 仅转换有效长度范围内的列表元素
int[] arr = new int[arrSize];
for (int i = 0; i < arrSize; i++) {
arr[i] = Get(i);
}
return arr;
}
}
/* 列表类 */
type myList struct {
arrCapacity int
arr []int
arrSize int
extendRatio int
}
/* 构造函数 */
func newMyList() *myList {
return &myList{
arrCapacity: 10, // 列表容量
arr: make([]int, 10), // 数组(存储列表元素)
arrSize: 0, // 列表长度(当前元素数量)
extendRatio: 2, // 每次列表扩容的倍数
}
}
/* 获取列表长度(当前元素数量) */
func (l *myList) size() int {
return l.arrSize
}
/* 获取列表容量 */
func (l *myList) capacity() int {
return l.arrCapacity
}
/* 访问元素 */
func (l *myList) get(index int) int {
// 索引如果越界,则抛出异常,下同
if index < 0 || index >= l.arrSize {
panic("索引越界")
}
return l.arr[index]
}
/* 更新元素 */
func (l *myList) set(num, index int) {
if index < 0 || index >= l.arrSize {
panic("索引越界")
}
l.arr[index] = num
}
/* 在尾部添加元素 */
func (l *myList) add(num int) {
// 元素数量超出容量时,触发扩容机制
if l.arrSize == l.arrCapacity {
l.extendCapacity()
}
l.arr[l.arrSize] = num
// 更新元素数量
l.arrSize++
}
/* 在中间插入元素 */
func (l *myList) insert(num, index int) {
if index < 0 || index >= l.arrSize {
panic("索引越界")
}
// 元素数量超出容量时,触发扩容机制
if l.arrSize == l.arrCapacity {
l.extendCapacity()
}
// 将索引 index 以及之后的元素都向后移动一位
for j := l.arrSize - 1; j >= index; j-- {
l.arr[j+1] = l.arr[j]
}
l.arr[index] = num
// 更新元素数量
l.arrSize++
}
/* 删除元素 */
func (l *myList) remove(index int) int {
if index < 0 || index >= l.arrSize {
panic("索引越界")
}
num := l.arr[index]
// 将索引 index 之后的元素都向前移动一位
for j := index; j < l.arrSize-1; j++ {
l.arr[j] = l.arr[j+1]
}
// 更新元素数量
l.arrSize--
// 返回被删除的元素
return num
}
/* 列表扩容 */
func (l *myList) extendCapacity() {
// 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组复制到新数组
l.arr = append(l.arr, make([]int, l.arrCapacity*(l.extendRatio-1))...)
// 更新列表容量
l.arrCapacity = len(l.arr)
}
/* 返回有效长度的列表 */
func (l *myList) toArray() []int {
// 仅转换有效长度范围内的列表元素
return l.arr[:l.arrSize]
}
/* 列表类 */
class MyList {
private var arr: [Int] // 数组(存储列表元素)
private var _capacity: Int // 列表容量
private var _size: Int // 列表长度(当前元素数量)
private let extendRatio: Int // 每次列表扩容的倍数
/* 构造方法 */
init() {
_capacity = 10
_size = 0
extendRatio = 2
arr = Array(repeating: 0, count: _capacity)
}
/* 获取列表长度(当前元素数量)*/
func size() -> Int {
_size
}
/* 获取列表容量 */
func capacity() -> Int {
_capacity
}
/* 访问元素 */
func get(index: Int) -> Int {
// 索引如果越界则抛出错误,下同
if index < 0 || index >= size() {
fatalError("索引越界")
}
return arr[index]
}
/* 更新元素 */
func set(index: Int, num: Int) {
if index < 0 || index >= size() {
fatalError("索引越界")
}
arr[index] = num
}
/* 在尾部添加元素 */
func add(num: Int) {
// 元素数量超出容量时,触发扩容机制
if size() == capacity() {
extendCapacity()
}
arr[size()] = num
// 更新元素数量
_size += 1
}
/* 在中间插入元素 */
func insert(index: Int, num: Int) {
if index < 0 || index >= size() {
fatalError("索引越界")
}
// 元素数量超出容量时,触发扩容机制
if size() == capacity() {
extendCapacity()
}
// 将索引 index 以及之后的元素都向后移动一位
for j in (index ..< size()).reversed() {
arr[j + 1] = arr[j]
}
arr[index] = num
// 更新元素数量
_size += 1
}
/* 删除元素 */
@discardableResult
func remove(index: Int) -> Int {
if index < 0 || index >= size() {
fatalError("索引越界")
}
let num = arr[index]
// 将将索引 index 之后的元素都向前移动一位
for j in index ..< (size() - 1) {
arr[j] = arr[j + 1]
}
// 更新元素数量
_size -= 1
// 返回被删除的元素
return num
}
/* 列表扩容 */
func extendCapacity() {
// 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组复制到新数组
arr = arr + Array(repeating: 0, count: capacity() * (extendRatio - 1))
// 更新列表容量
_capacity = arr.count
}
/* 将列表转换为数组 */
func toArray() -> [Int] {
Array(arr.prefix(size()))
}
}
/* 列表类 */
class MyList {
#arr = new Array(); // 数组(存储列表元素)
#capacity = 10; // 列表容量
#size = 0; // 列表长度(当前元素数量)
#extendRatio = 2; // 每次列表扩容的倍数
/* 构造方法 */
constructor() {
this.#arr = new Array(this.#capacity);
}
/* 获取列表长度(当前元素数量)*/
size() {
return this.#size;
}
/* 获取列表容量 */
capacity() {
return this.#capacity;
}
/* 访问元素 */
get(index) {
// 索引如果越界,则抛出异常,下同
if (index < 0 || index >= this.#size) throw new Error('索引越界');
return this.#arr[index];
}
/* 更新元素 */
set(index, num) {
if (index < 0 || index >= this.#size) throw new Error('索引越界');
this.#arr[index] = num;
}
/* 在尾部添加元素 */
add(num) {
// 如果长度等于容量,则需要扩容
if (this.#size === this.#capacity) {
this.extendCapacity();
}
// 将新元素添加到列表尾部
this.#arr[this.#size] = num;
this.#size++;
}
/* 在中间插入元素 */
insert(index, num) {
if (index < 0 || index >= this.#size) throw new Error('索引越界');
// 元素数量超出容量时,触发扩容机制
if (this.#size === this.#capacity) {
this.extendCapacity();
}
// 将索引 index 以及之后的元素都向后移动一位
for (let j = this.#size - 1; j >= index; j--) {
this.#arr[j + 1] = this.#arr[j];
}
// 更新元素数量
this.#arr[index] = num;
this.#size++;
}
/* 删除元素 */
remove(index) {
if (index < 0 || index >= this.#size) throw new Error('索引越界');
let num = this.#arr[index];
// 将将索引 index 之后的元素都向前移动一位
for (let j = index; j < this.#size - 1; j++) {
this.#arr[j] = this.#arr[j + 1];
}
// 更新元素数量
this.#size--;
// 返回被删除的元素
return num;
}
/* 列表扩容 */
extendCapacity() {
// 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组复制到新数组
this.#arr = this.#arr.concat(
new Array(this.capacity() * (this.#extendRatio - 1))
);
// 更新列表容量
this.#capacity = this.#arr.length;
}
/* 将列表转换为数组 */
toArray() {
let size = this.size();
// 仅转换有效长度范围内的列表元素
const arr = new Array(size);
for (let i = 0; i < size; i++) {
arr[i] = this.get(i);
}
return arr;
}
}
/* 列表类 */
class MyList {
private arr: Array<number>; // 数组(存储列表元素)
private _capacity: number = 10; // 列表容量
private _size: number = 0; // 列表长度(当前元素数量)
private extendRatio: number = 2; // 每次列表扩容的倍数
/* 构造方法 */
constructor() {
this.arr = new Array(this._capacity);
}
/* 获取列表长度(当前元素数量)*/
public size(): number {
return this._size;
}
/* 获取列表容量 */
public capacity(): number {
return this._capacity;
}
/* 访问元素 */
public get(index: number): number {
// 索引如果越界,则抛出异常,下同
if (index < 0 || index >= this._size) throw new Error('索引越界');
return this.arr[index];
}
/* 更新元素 */
public set(index: number, num: number): void {
if (index < 0 || index >= this._size) throw new Error('索引越界');
this.arr[index] = num;
}
/* 在尾部添加元素 */
public add(num: number): void {
// 如果长度等于容量,则需要扩容
if (this._size === this._capacity) this.extendCapacity();
// 将新元素添加到列表尾部
this.arr[this._size] = num;
this._size++;
}
/* 在中间插入元素 */
public insert(index: number, num: number): void {
if (index < 0 || index >= this._size) throw new Error('索引越界');
// 元素数量超出容量时,触发扩容机制
if (this._size === this._capacity) {
this.extendCapacity();
}
// 将索引 index 以及之后的元素都向后移动一位
for (let j = this._size - 1; j >= index; j--) {
this.arr[j + 1] = this.arr[j];
}
// 更新元素数量
this.arr[index] = num;
this._size++;
}
/* 删除元素 */
public remove(index: number): number {
if (index < 0 || index >= this._size) throw new Error('索引越界');
let num = this.arr[index];
// 将将索引 index 之后的元素都向前移动一位
for (let j = index; j < this._size - 1; j++) {
this.arr[j] = this.arr[j + 1];
}
// 更新元素数量
this._size--;
// 返回被删除的元素
return num;
}
/* 列表扩容 */
public extendCapacity(): void {
// 新建一个长度为 size 的数组,并将原数组复制到新数组
this.arr = this.arr.concat(
new Array(this.capacity() * (this.extendRatio - 1))
);
// 更新列表容量
this._capacity = this.arr.length;
}
/* 将列表转换为数组 */
public toArray(): number[] {
let size = this.size();
// 仅转换有效长度范围内的列表元素
const arr = new Array(size);
for (let i = 0; i < size; i++) {
arr[i] = this.get(i);
}
return arr;
}
}
/* 列表类 */
class MyList {
late List<int> _arr; // 数组(存储列表元素)
int _capacity = 10; // 列表容量
int _size = 0; // 列表长度(当前元素数量)
int _extendRatio = 2; // 每次列表扩容的倍数
/* 构造方法 */
MyList() {
_arr = List.filled(_capacity, 0);
}
/* 获取列表长度(当前元素数量)*/
int size() => _size;
/* 获取列表容量 */
int capacity() => _capacity;
/* 访问元素 */
int get(int index) {
if (index >= _size) throw RangeError('索引越界');
return _arr[index];
}
/* 更新元素 */
void set(int index, int _num) {
if (index >= _size) throw RangeError('索引越界');
_arr[index] = _num;
}
/* 在尾部添加元素 */
void add(int _num) {
// 元素数量超出容量时,触发扩容机制
if (_size == _capacity) extendCapacity();
_arr[_size] = _num;
// 更新元素数量
_size++;
}
/* 在中间插入元素 */
void insert(int index, int _num) {
if (index >= _size) throw RangeError('索引越界');
// 元素数量超出容量时,触发扩容机制
if (_size == _capacity) extendCapacity();
// 将索引 index 以及之后的元素都向后移动一位
for (var j = _size - 1; j >= index; j--) {
_arr[j + 1] = _arr[j];
}
_arr[index] = _num;
// 更新元素数量
_size++;
}
/* 删除元素 */
int remove(int index) {
if (index >= _size) throw RangeError('索引越界');
int _num = _arr[index];
// 将将索引 index 之后的元素都向前移动一位
for (var j = index; j < _size - 1; j++) {
_arr[j] = _arr[j + 1];
}
// 更新元素数量
_size--;
// 返回被删除的元素
return _num;
}
/* 列表扩容 */
void extendCapacity() {
// 新建一个长度为原数组 _extendRatio 倍的新数组
final _newNums = List.filled(_capacity * _extendRatio, 0);
// 将原数组复制到新数组
List.copyRange(_newNums, 0, _arr);
// 更新 _arr 的引用
_arr = _newNums;
// 更新列表容量
_capacity = _arr.length;
}
/* 将列表转换为数组 */
List<int> toArray() {
List<int> arr = [];
for (var i = 0; i < _size; i++) {
arr.add(get(i));
}
return arr;
}
}
/* 列表类 */
#[allow(dead_code)]
struct MyList {
arr: Vec<i32>, // 数组(存储列表元素)
capacity: usize, // 列表容量
size: usize, // 列表长度(当前元素数量)
extend_ratio: usize, // 每次列表扩容的倍数
}
#[allow(unused, unused_comparisons)]
impl MyList {
/* 构造方法 */
pub fn new(capacity: usize) -> Self {
let mut vec = Vec::new();
vec.resize(capacity, 0);
Self {
arr: vec,
capacity,
size: 0,
extend_ratio: 2,
}
}
/* 获取列表长度(当前元素数量)*/
pub fn size(&self) -> usize {
return self.size;
}
/* 获取列表容量 */
pub fn capacity(&self) -> usize {
return self.capacity;
}
/* 访问元素 */
pub fn get(&self, index: usize) -> i32 {
// 索引如果越界,则抛出异常,下同
if index >= self.size {
panic!("索引越界")
};
return self.arr[index];
}
/* 更新元素 */
pub fn set(&mut self, index: usize, num: i32) {
if index >= self.size {
panic!("索引越界")
};
self.arr[index] = num;
}
/* 在尾部添加元素 */
pub fn add(&mut self, num: i32) {
// 元素数量超出容量时,触发扩容机制
if self.size == self.capacity() {
self.extend_capacity();
}
self.arr[self.size] = num;
// 更新元素数量
self.size += 1;
}
/* 在中间插入元素 */
pub fn insert(&mut self, index: usize, num: i32) {
if index >= self.size() {
panic!("索引越界")
};
// 元素数量超出容量时,触发扩容机制
if self.size == self.capacity() {
self.extend_capacity();
}
// 将索引 index 以及之后的元素都向后移动一位
for j in (index..self.size).rev() {
self.arr[j + 1] = self.arr[j];
}
self.arr[index] = num;
// 更新元素数量
self.size += 1;
}
/* 删除元素 */
pub fn remove(&mut self, index: usize) -> i32 {
if index >= self.size() {
panic!("索引越界")
};
let num = self.arr[index];
// 将将索引 index 之后的元素都向前移动一位
for j in (index..self.size - 1) {
self.arr[j] = self.arr[j + 1];
}
// 更新元素数量
self.size -= 1;
// 返回被删除的元素
return num;
}
/* 列表扩容 */
pub fn extend_capacity(&mut self) {
// 新建一个长度为原数组 extend_ratio 倍的新数组,并将原数组复制到新数组
let new_capacity = self.capacity * self.extend_ratio;
self.arr.resize(new_capacity, 0);
// 更新列表容量
self.capacity = new_capacity;
}
/* 将列表转换为数组 */
pub fn to_array(&mut self) -> Vec<i32> {
// 仅转换有效长度范围内的列表元素
let mut arr = Vec::new();
for i in 0..self.size {
arr.push(self.get(i));
}
arr
}
}
/* 列表类 */
typedef struct {
int *arr; // 数组(存储列表元素)
int capacity; // 列表容量
int size; // 列表大小
int extendRatio; // 列表每次扩容的倍数
} MyList;
/* 构造函数 */
MyList *newMyList() {
MyList *nums = malloc(sizeof(MyList));
nums->capacity = 10;
nums->arr = malloc(sizeof(int) * nums->capacity);
nums->size = 0;
nums->extendRatio = 2;
return nums;
}
/* 析构函数 */
void delMyList(MyList *nums) {
free(nums->arr);
free(nums);
}
/* 获取列表长度 */
int size(MyList *nums) {
return nums->size;
}
/* 获取列表容量 */
int capacity(MyList *nums) {
return nums->capacity;
}
/* 访问元素 */
int get(MyList *nums, int index) {
assert(index >= 0 && index < nums->size);
return nums->arr[index];
}
/* 更新元素 */
void set(MyList *nums, int index, int num) {
assert(index >= 0 && index < nums->size);
nums->arr[index] = num;
}
/* 在尾部添加元素 */
void add(MyList *nums, int num) {
if (size(nums) == capacity(nums)) {
extendCapacity(nums); // 扩容
}
nums->arr[size(nums)] = num;
nums->size++;
}
/* 在中间插入元素 */
void insert(MyList *nums, int index, int num) {
assert(index >= 0 && index < size(nums));
// 元素数量超出容量时,触发扩容机制
if (size(nums) == capacity(nums)) {
extendCapacity(nums); // 扩容
}
for (int i = size(nums); i > index; --i) {
nums->arr[i] = nums->arr[i - 1];
}
nums->arr[index] = num;
nums->size++;
}
/* 删除元素 */
// 注意:stdio.h 占用了 remove 关键词
int removeItem(MyList *nums, int index) {
assert(index >= 0 && index < size(nums));
int num = nums->arr[index];
for (int i = index; i < size(nums) - 1; i++) {
nums->arr[i] = nums->arr[i + 1];
}
nums->size--;
return num;
}
/* 列表扩容 */
void extendCapacity(MyList *nums) {
// 先分配空间
int newCapacity = capacity(nums) * nums->extendRatio;
int *extend = (int *)malloc(sizeof(int) * newCapacity);
int *temp = nums->arr;
// 拷贝旧数据到新数据
for (int i = 0; i < size(nums); i++)
extend[i] = nums->arr[i];
// 释放旧数据
free(temp);
// 更新新数据
nums->arr = extend;
nums->capacity = newCapacity;
}
/* 将列表转换为 Array 用于打印 */
int *toArray(MyList *nums) {
return nums->arr;
}
/* 列表类 */
class MyList {
private var arr: IntArray = intArrayOf() // 数组(存储列表元素)
private var capacity: Int = 10 // 列表容量
private var size: Int = 0 // 列表长度(当前元素数量)
private var extendRatio: Int = 2 // 每次列表扩容的倍数
/* 构造方法 */
init {
arr = IntArray(capacity)
}
/* 获取列表长度(当前元素数量) */
fun size(): Int {
return size
}
/* 获取列表容量 */
fun capacity(): Int {
return capacity
}
/* 访问元素 */
fun get(index: Int): Int {
// 索引如果越界,则抛出异常,下同
if (index < 0 || index >= size)
throw IndexOutOfBoundsException("索引越界")
return arr[index]
}
/* 更新元素 */
fun set(index: Int, num: Int) {
if (index < 0 || index >= size)
throw IndexOutOfBoundsException("索引越界")
arr[index] = num
}
/* 在尾部添加元素 */
fun add(num: Int) {
// 元素数量超出容量时,触发扩容机制
if (size == capacity())
extendCapacity()
arr[size] = num
// 更新元素数量
size++
}
/* 在中间插入元素 */
fun insert(index: Int, num: Int) {
if (index < 0 || index >= size)
throw IndexOutOfBoundsException("索引越界")
// 元素数量超出容量时,触发扩容机制
if (size == capacity())
extendCapacity()
// 将索引 index 以及之后的元素都向后移动一位
for (j in size - 1 downTo index)
arr[j + 1] = arr[j]
arr[index] = num
// 更新元素数量
size++
}
/* 删除元素 */
fun remove(index: Int): Int {
if (index < 0 || index >= size)
throw IndexOutOfBoundsException("索引越界")
val num = arr[index]
// 将将索引 index 之后的元素都向前移动一位
for (j in index..<size - 1)
arr[j] = arr[j + 1]
// 更新元素数量
size--
// 返回被删除的元素
return num
}
/* 列表扩容 */
fun extendCapacity() {
// 新建一个长度为原数组 extendRatio 倍的新数组,并将原数组复制到新数组
arr = arr.copyOf(capacity() * extendRatio)
// 更新列表容量
capacity = arr.size
}
/* 将列表转换为数组 */
fun toArray(): IntArray {
val size = size()
// 仅转换有效长度范围内的列表元素
val arr = IntArray(size)
for (i in 0..<size) {
arr[i] = get(i)
}
return arr
}
}
### 列表类 ###
class MyList
attr_reader :size # 获取列表长度(当前元素数量)
attr_reader :capacity # 获取列表容量
### 构造方法 ###
def initialize
@capacity = 10
@size = 0
@extend_ratio = 2
@arr = Array.new(capacity)
end
### 访问元素 ###
def get(index)
# 索引如果越界,则抛出异常,下同
raise IndexError, "索引越界" if index < 0 || index >= size
@arr[index]
end
### 访问元素 ###
def set(index, num)
raise IndexError, "索引越界" if index < 0 || index >= size
@arr[index] = num
end
### 在尾部添加元素 ###
def add(num)
# 元素数量超出容量时,触发扩容机制
extend_capacity if size == capacity
@arr[size] = num
# 更新元素数量
@size += 1
end
### 在中间插入元素 ###
def insert(index, num)
raise IndexError, "索引越界" if index < 0 || index >= size
# 元素数量超出容量时,触发扩容机制
extend_capacity if size == capacity
# 将索引 index 以及之后的元素都向后移动一位
for j in (size - 1).downto(index)
@arr[j + 1] = @arr[j]
end
@arr[index] = num
# 更新元素数量
@size += 1
end
### 删除元素 ###
def remove(index)
raise IndexError, "索引越界" if index < 0 || index >= size
num = @arr[index]
# 将将索引 index 之后的元素都向前移动一位
for j in index...size
@arr[j] = @arr[j + 1]
end
# 更新元素数量
@size -= 1
# 返回被删除的元素
num
end
### 列表扩容 ###
def extend_capacity
# 新建一个长度为原数组 extend_ratio 倍的新数组,并将原数组复制到新数组
arr = @arr.dup + Array.new(capacity * (@extend_ratio - 1))
# 更新列表容量
@capacity = arr.length
end
### 将列表转换为数组 ###
def to_array
sz = size
# 仅转换有效长度范围内的列表元素
arr = Array.new(sz)
for i in 0...sz
arr[i] = get(i)
end
arr
end
end
// 列表类
fn MyList(comptime T: type) type {
return struct {
const Self = @This();
arr: []T = undefined, // 数组(存储列表元素)
arrCapacity: usize = 10, // 列表容量
numSize: usize = 0, // 列表长度(当前元素数量)
extendRatio: usize = 2, // 每次列表扩容的倍数
mem_arena: ?std.heap.ArenaAllocator = null,
mem_allocator: std.mem.Allocator = undefined, // 内存分配器
// 构造函数(分配内存+初始化列表)
pub fn init(self: *Self, allocator: std.mem.Allocator) !void {
if (self.mem_arena == null) {
self.mem_arena = std.heap.ArenaAllocator.init(allocator);
self.mem_allocator = self.mem_arena.?.allocator();
}
self.arr = try self.mem_allocator.alloc(T, self.arrCapacity);
@memset(self.arr, @as(T, 0));
}
// 析构函数(释放内存)
pub fn deinit(self: *Self) void {
if (self.mem_arena == null) return;
self.mem_arena.?.deinit();
}
// 获取列表长度(当前元素数量)
pub fn size(self: *Self) usize {
return self.numSize;
}
// 获取列表容量
pub fn capacity(self: *Self) usize {
return self.arrCapacity;
}
// 访问元素
pub fn get(self: *Self, index: usize) T {
// 索引如果越界,则抛出异常,下同
if (index < 0 or index >= self.size()) @panic("索引越界");
return self.arr[index];
}
// 更新元素
pub fn set(self: *Self, index: usize, num: T) void {
// 索引如果越界,则抛出异常,下同
if (index < 0 or index >= self.size()) @panic("索引越界");
self.arr[index] = num;
}
// 在尾部添加元素
pub fn add(self: *Self, num: T) !void {
// 元素数量超出容量时,触发扩容机制
if (self.size() == self.capacity()) try self.extendCapacity();
self.arr[self.size()] = num;
// 更新元素数量
self.numSize += 1;
}
// 在中间插入元素
pub fn insert(self: *Self, index: usize, num: T) !void {
if (index < 0 or index >= self.size()) @panic("索引越界");
// 元素数量超出容量时,触发扩容机制
if (self.size() == self.capacity()) try self.extendCapacity();
// 将索引 index 以及之后的元素都向后移动一位
var j = self.size() - 1;
while (j >= index) : (j -= 1) {
self.arr[j + 1] = self.arr[j];
}
self.arr[index] = num;
// 更新元素数量
self.numSize += 1;
}
// 删除元素
pub fn remove(self: *Self, index: usize) T {
if (index < 0 or index >= self.size()) @panic("索引越界");
var num = self.arr[index];
// 将索引 index 之后的元素都向前移动一位
var j = index;
while (j < self.size() - 1) : (j += 1) {
self.arr[j] = self.arr[j + 1];
}
// 更新元素数量
self.numSize -= 1;
// 返回被删除的元素
return num;
}
// 列表扩容
pub fn extendCapacity(self: *Self) !void {
// 新建一个长度为 size * extendRatio 的数组,并将原数组复制到新数组
var newCapacity = self.capacity() * self.extendRatio;
var extend = try self.mem_allocator.alloc(T, newCapacity);
@memset(extend, @as(T, 0));
// 将原数组中的所有元素复制到新数组
std.mem.copy(T, extend, self.arr);
self.arr = extend;
// 更新列表容量
self.arrCapacity = newCapacity;
}
// 将列表转换为数组
pub fn toArray(self: *Self) ![]T {
// 仅转换有效长度范围内的列表元素
var arr = try self.mem_allocator.alloc(T, self.size());
@memset(arr, @as(T, 0));
for (arr, 0..) |*num, i| {
num.* = self.get(i);
}
return arr;
}
};
}