""" File: min_path_sum.py Created Time: 2023-07-04 Author: krahets (krahets@163.com) """ from math import inf def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int: """Minimum path sum: Brute force search""" # If it's the top-left cell, terminate the search if i == 0 and j == 0: return grid[0][0] # If the row or column index is out of bounds, return a +∞ cost if i < 0 or j < 0: return inf # Calculate the minimum path cost from the top-left to (i-1, j) and (i, j-1) up = min_path_sum_dfs(grid, i - 1, j) left = min_path_sum_dfs(grid, i, j - 1) # Return the minimum path cost from the top-left to (i, j) return min(left, up) + grid[i][j] def min_path_sum_dfs_mem( grid: list[list[int]], mem: list[list[int]], i: int, j: int ) -> int: """Minimum path sum: Memoized search""" # If it's the top-left cell, terminate the search if i == 0 and j == 0: return grid[0][0] # If the row or column index is out of bounds, return a +∞ cost if i < 0 or j < 0: return inf # If there is a record, return it if mem[i][j] != -1: return mem[i][j] # The minimum path cost from the left and top cells up = min_path_sum_dfs_mem(grid, mem, i - 1, j) left = min_path_sum_dfs_mem(grid, mem, i, j - 1) # Record and return the minimum path cost from the top-left to (i, j) mem[i][j] = min(left, up) + grid[i][j] return mem[i][j] def min_path_sum_dp(grid: list[list[int]]) -> int: """Minimum path sum: Dynamic programming""" n, m = len(grid), len(grid[0]) # Initialize dp table dp = [[0] * m for _ in range(n)] dp[0][0] = grid[0][0] # State transition: first row for j in range(1, m): dp[0][j] = dp[0][j - 1] + grid[0][j] # State transition: first column for i in range(1, n): dp[i][0] = dp[i - 1][0] + grid[i][0] # State transition: the rest of the rows and columns for i in range(1, n): for j in range(1, m): dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j] return dp[n - 1][m - 1] def min_path_sum_dp_comp(grid: list[list[int]]) -> int: """Minimum path sum: Space-optimized dynamic programming""" n, m = len(grid), len(grid[0]) # Initialize dp table dp = [0] * m # State transition: first row dp[0] = grid[0][0] for j in range(1, m): dp[j] = dp[j - 1] + grid[0][j] # State transition: the rest of the rows for i in range(1, n): # State transition: first column dp[0] = dp[0] + grid[i][0] # State transition: the rest of the columns for j in range(1, m): dp[j] = min(dp[j - 1], dp[j]) + grid[i][j] return dp[m - 1] """Driver Code""" if __name__ == "__main__": grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]] n, m = len(grid), len(grid[0]) # Brute force search res = min_path_sum_dfs(grid, n - 1, m - 1) print(f"The minimum path sum from the top-left to the bottom-right corner is {res}") # Memoized search mem = [[-1] * m for _ in range(n)] res = min_path_sum_dfs_mem(grid, mem, n - 1, m - 1) print(f"The minimum path sum from the top-left to the bottom-right corner is {res}") # Dynamic programming res = min_path_sum_dp(grid) print(f"The minimum path sum from the top-left to the bottom-right corner is {res}") # Space-optimized dynamic programming res = min_path_sum_dp_comp(grid) print(f"The minimum path sum from the top-left to the bottom-right corner is {res}")