14.1 初探动态规划¶
「动态规划 dynamic programming」是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。
在本节中,我们从一个经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再逐步导出更高效的动态规划解法。
爬楼梯
给定一个共有 \(n\) 阶的楼梯,你每步可以上 \(1\) 阶或者 \(2\) 阶,请问有多少种方案可以爬到楼顶?
如图 14-1 所示,对于一个 \(3\) 阶楼梯,共有 \(3\) 种方案可以爬到楼顶。
图 14-1 爬到第 3 阶的方案数量
本题的目标是求解方案数量,我们可以考虑通过回溯来穷举所有可能性。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 \(1\) 阶或 \(2\) 阶,每当到达楼梯顶部时就将方案数量加 \(1\) ,当越过楼梯顶部时就将其剪枝。代码如下所示:
def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:
"""回溯"""
# 当爬到第 n 阶时,方案数量加 1
if state == n:
res[0] += 1
# 遍历所有选择
for choice in choices:
# 剪枝:不允许越过第 n 阶
if state + choice > n:
continue
# 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res)
# 回退
def climbing_stairs_backtrack(n: int) -> int:
"""爬楼梯:回溯"""
choices = [1, 2] # 可选择向上爬 1 阶或 2 阶
state = 0 # 从第 0 阶开始爬
res = [0] # 使用 res[0] 记录方案数量
backtrack(choices, state, n, res)
return res[0]
/* 回溯 */
void backtrack(vector<int> &choices, int state, int n, vector<int> &res) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n)
res[0]++;
// 遍历所有选择
for (auto &choice : choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n)
continue;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
vector<int> choices = {1, 2}; // 可选择向上爬 1 阶或 2 阶
int state = 0; // 从第 0 阶开始爬
vector<int> res = {0}; // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res[0];
}
/* 回溯 */
void backtrack(List<Integer> choices, int state, int n, List<Integer> res) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n)
res.set(0, res.get(0) + 1);
// 遍历所有选择
for (Integer choice : choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n)
continue;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
List<Integer> choices = Arrays.asList(1, 2); // 可选择向上爬 1 阶或 2 阶
int state = 0; // 从第 0 阶开始爬
List<Integer> res = new ArrayList<>();
res.add(0); // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res.get(0);
}
/* 回溯 */
void Backtrack(List<int> choices, int state, int n, List<int> res) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n)
res[0]++;
// 遍历所有选择
foreach (int choice in choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n)
continue;
// 尝试:做出选择,更新状态
Backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
int ClimbingStairsBacktrack(int n) {
List<int> choices = [1, 2]; // 可选择向上爬 1 阶或 2 阶
int state = 0; // 从第 0 阶开始爬
List<int> res = [0]; // 使用 res[0] 记录方案数量
Backtrack(choices, state, n, res);
return res[0];
}
/* 回溯 */
func backtrack(choices []int, state, n int, res []int) {
// 当爬到第 n 阶时,方案数量加 1
if state == n {
res[0] = res[0] + 1
}
// 遍历所有选择
for _, choice := range choices {
// 剪枝:不允许越过第 n 阶
if state+choice > n {
continue
}
// 尝试:做出选择,更新状态
backtrack(choices, state+choice, n, res)
// 回退
}
}
/* 爬楼梯:回溯 */
func climbingStairsBacktrack(n int) int {
// 可选择向上爬 1 阶或 2 阶
choices := []int{1, 2}
// 从第 0 阶开始爬
state := 0
res := make([]int, 1)
// 使用 res[0] 记录方案数量
res[0] = 0
backtrack(choices, state, n, res)
return res[0]
}
/* 回溯 */
func backtrack(choices: [Int], state: Int, n: Int, res: inout [Int]) {
// 当爬到第 n 阶时,方案数量加 1
if state == n {
res[0] += 1
}
// 遍历所有选择
for choice in choices {
// 剪枝:不允许越过第 n 阶
if state + choice > n {
continue
}
backtrack(choices: choices, state: state + choice, n: n, res: &res)
}
}
/* 爬楼梯:回溯 */
func climbingStairsBacktrack(n: Int) -> Int {
let choices = [1, 2] // 可选择向上爬 1 阶或 2 阶
let state = 0 // 从第 0 阶开始爬
var res: [Int] = []
res.append(0) // 使用 res[0] 记录方案数量
backtrack(choices: choices, state: state, n: n, res: &res)
return res[0]
}
/* 回溯 */
function backtrack(choices, state, n, res) {
// 当爬到第 n 阶时,方案数量加 1
if (state === n) res.set(0, res.get(0) + 1);
// 遍历所有选择
for (const choice of choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n) continue;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
function climbingStairsBacktrack(n) {
const choices = [1, 2]; // 可选择向上爬 1 阶或 2 阶
const state = 0; // 从第 0 阶开始爬
const res = new Map();
res.set(0, 0); // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res.get(0);
}
/* 回溯 */
function backtrack(
choices: number[],
state: number,
n: number,
res: Map<0, any>
): void {
// 当爬到第 n 阶时,方案数量加 1
if (state === n) res.set(0, res.get(0) + 1);
// 遍历所有选择
for (const choice of choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n) continue;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
function climbingStairsBacktrack(n: number): number {
const choices = [1, 2]; // 可选择向上爬 1 阶或 2 阶
const state = 0; // 从第 0 阶开始爬
const res = new Map();
res.set(0, 0); // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res.get(0);
}
/* 回溯 */
void backtrack(List<int> choices, int state, int n, List<int> res) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n) {
res[0]++;
}
// 遍历所有选择
for (int choice in choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n) continue;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
List<int> choices = [1, 2]; // 可选择向上爬 1 阶或 2 阶
int state = 0; // 从第 0 阶开始爬
List<int> res = [];
res.add(0); // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res[0];
}
/* 回溯 */
fn backtrack(choices: &[i32], state: i32, n: i32, res: &mut [i32]) {
// 当爬到第 n 阶时,方案数量加 1
if state == n { res[0] = res[0] + 1; }
// 遍历所有选择
for &choice in choices {
// 剪枝:不允许越过第 n 阶
if state + choice > n { continue; }
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
/* 爬楼梯:回溯 */
fn climbing_stairs_backtrack(n: usize) -> i32 {
let choices = vec![ 1, 2 ]; // 可选择向上爬 1 阶或 2 阶
let state = 0; // 从第 0 阶开始爬
let mut res = Vec::new();
res.push(0); // 使用 res[0] 记录方案数量
backtrack(&choices, state, n as i32, &mut res);
res[0]
}
/* 回溯 */
void backtrack(int *choices, int state, int n, int *res, int len) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n)
res[0]++;
// 遍历所有选择
for (int i = 0; i < len; i++) {
int choice = choices[i];
// 剪枝:不允许越过第 n 阶
if (state + choice > n)
continue;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res, len);
// 回退
}
}
/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
int choices[2] = {1, 2}; // 可选择向上爬 1 阶或 2 阶
int state = 0; // 从第 0 阶开始爬
int *res = (int *)malloc(sizeof(int));
*res = 0; // 使用 res[0] 记录方案数量
int len = sizeof(choices) / sizeof(int);
backtrack(choices, state, n, res, len);
int result = *res;
free(res);
return result;
}
// 回溯
fn backtrack(choices: []i32, state: i32, n: i32, res: std.ArrayList(i32)) void {
// 当爬到第 n 阶时,方案数量加 1
if (state == n) {
res.items[0] = res.items[0] + 1;
}
// 遍历所有选择
for (choices) |choice| {
// 剪枝:不允许越过第 n 阶
if (state + choice > n) {
continue;
}
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}
// 爬楼梯:回溯
fn climbingStairsBacktrack(n: usize) !i32 {
var choices = [_]i32{ 1, 2 }; // 可选择向上爬 1 阶或 2 阶
var state: i32 = 0; // 从第 0 阶开始爬
var res = std.ArrayList(i32).init(std.heap.page_allocator);
defer res.deinit();
try res.append(0); // 使用 res[0] 记录方案数量
backtrack(&choices, state, @intCast(n), res);
return res.items[0];
}
可视化运行
14.1.1 方法一:暴力搜索¶
回溯算法通常并不显式地对问题进行拆解,而是将求解问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。
我们可以尝试从问题分解的角度分析这道题。设爬到第 \(i\) 阶共有 \(dp[i]\) 种方案,那么 \(dp[i]\) 就是原问题,其子问题包括:
由于每轮只能上 \(1\) 阶或 \(2\) 阶,因此当我们站在第 \(i\) 阶楼梯上时,上一轮只可能站在第 \(i - 1\) 阶或第 \(i - 2\) 阶上。换句话说,我们只能从第 \(i -1\) 阶或第 \(i - 2\) 阶迈向第 \(i\) 阶。
由此便可得出一个重要推论:爬到第 \(i - 1\) 阶的方案数加上爬到第 \(i - 2\) 阶的方案数就等于爬到第 \(i\) 阶的方案数。公式如下:
这意味着在爬楼梯问题中,各个子问题之间存在递推关系,原问题的解可以由子问题的解构建得来。图 14-2 展示了该递推关系。
图 14-2 方案数量递推关系
我们可以根据递推公式得到暴力搜索解法。以 \(dp[n]\) 为起始点,递归地将一个较大问题拆解为两个较小问题的和,直至到达最小子问题 \(dp[1]\) 和 \(dp[2]\) 时返回。其中,最小子问题的解是已知的,即 \(dp[1] = 1\)、\(dp[2] = 2\) ,表示爬到第 \(1\)、\(2\) 阶分别有 \(1\)、\(2\) 种方案。
观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁:
可视化运行
图 14-3 展示了暴力搜索形成的递归树。对于问题 \(dp[n]\) ,其递归树的深度为 \(n\) ,时间复杂度为 \(O(2^n)\) 。指数阶属于爆炸式增长,如果我们输入一个比较大的 \(n\) ,则会陷入漫长的等待之中。
图 14-3 爬楼梯对应递归树
观察图 14-3 ,指数阶的时间复杂度是“重叠子问题”导致的。例如 \(dp[9]\) 被分解为 \(dp[8]\) 和 \(dp[7]\) ,\(dp[8]\) 被分解为 \(dp[7]\) 和 \(dp[6]\) ,两者都包含子问题 \(dp[7]\) 。
以此类推,子问题中包含更小的重叠子问题,子子孙孙无穷尽也。绝大部分计算资源都浪费在这些重叠的子问题上。
14.1.2 方法二:记忆化搜索¶
为了提升算法效率,我们希望所有的重叠子问题都只被计算一次。为此,我们声明一个数组 mem
来记录每个子问题的解,并在搜索过程中将重叠子问题剪枝。
- 当首次计算 \(dp[i]\) 时,我们将其记录至
mem[i]
,以便之后使用。 - 当再次需要计算 \(dp[i]\) 时,我们便可直接从
mem[i]
中获取结果,从而避免重复计算该子问题。
代码如下所示:
def dfs(i: int, mem: list[int]) -> int:
"""记忆化搜索"""
# 已知 dp[1] 和 dp[2] ,返回之
if i == 1 or i == 2:
return i
# 若存在记录 dp[i] ,则直接返回之
if mem[i] != -1:
return mem[i]
# dp[i] = dp[i-1] + dp[i-2]
count = dfs(i - 1, mem) + dfs(i - 2, mem)
# 记录 dp[i]
mem[i] = count
return count
def climbing_stairs_dfs_mem(n: int) -> int:
"""爬楼梯:记忆化搜索"""
# mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
mem = [-1] * (n + 1)
return dfs(n, mem)
/* 记忆化搜索 */
int dfs(int i, vector<int> &mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
vector<int> mem(n + 1, -1);
return dfs(n, mem);
}
/* 记忆化搜索 */
int dfs(int i, int[] mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
int[] mem = new int[n + 1];
Arrays.fill(mem, -1);
return dfs(n, mem);
}
/* 记忆化搜索 */
int DFS(int i, int[] mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = DFS(i - 1, mem) + DFS(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
int ClimbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
int[] mem = new int[n + 1];
Array.Fill(mem, -1);
return DFS(n, mem);
}
/* 记忆化搜索 */
func dfsMem(i int, mem []int) int {
// 已知 dp[1] 和 dp[2] ,返回之
if i == 1 || i == 2 {
return i
}
// 若存在记录 dp[i] ,则直接返回之
if mem[i] != -1 {
return mem[i]
}
// dp[i] = dp[i-1] + dp[i-2]
count := dfsMem(i-1, mem) + dfsMem(i-2, mem)
// 记录 dp[i]
mem[i] = count
return count
}
/* 爬楼梯:记忆化搜索 */
func climbingStairsDFSMem(n int) int {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
mem := make([]int, n+1)
for i := range mem {
mem[i] = -1
}
return dfsMem(n, mem)
}
/* 记忆化搜索 */
func dfs(i: Int, mem: inout [Int]) -> Int {
// 已知 dp[1] 和 dp[2] ,返回之
if i == 1 || i == 2 {
return i
}
// 若存在记录 dp[i] ,则直接返回之
if mem[i] != -1 {
return mem[i]
}
// dp[i] = dp[i-1] + dp[i-2]
let count = dfs(i: i - 1, mem: &mem) + dfs(i: i - 2, mem: &mem)
// 记录 dp[i]
mem[i] = count
return count
}
/* 爬楼梯:记忆化搜索 */
func climbingStairsDFSMem(n: Int) -> Int {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
var mem = Array(repeating: -1, count: n + 1)
return dfs(i: n, mem: &mem)
}
/* 记忆化搜索 */
function dfs(i, mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i === 1 || i === 2) return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1) return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
const count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
function climbingStairsDFSMem(n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
const mem = new Array(n + 1).fill(-1);
return dfs(n, mem);
}
/* 记忆化搜索 */
function dfs(i: number, mem: number[]): number {
// 已知 dp[1] 和 dp[2] ,返回之
if (i === 1 || i === 2) return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1) return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
const count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
function climbingStairsDFSMem(n: number): number {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
const mem = new Array(n + 1).fill(-1);
return dfs(n, mem);
}
/* 记忆化搜索 */
int dfs(int i, List<int> mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2) return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1) return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
List<int> mem = List.filled(n + 1, -1);
return dfs(n, mem);
}
/* 记忆化搜索 */
fn dfs(i: usize, mem: &mut [i32]) -> i32 {
// 已知 dp[1] 和 dp[2] ,返回之
if i == 1 || i == 2 { return i as i32; }
// 若存在记录 dp[i] ,则直接返回之
if mem[i] != -1 { return mem[i]; }
// dp[i] = dp[i-1] + dp[i-2]
let count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
count
}
/* 爬楼梯:记忆化搜索 */
fn climbing_stairs_dfs_mem(n: usize) -> i32 {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
let mut mem = vec![-1; n + 1];
dfs(n, &mut mem)
}
/* 记忆化搜索 */
int dfs(int i, int *mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
int *mem = (int *)malloc((n + 1) * sizeof(int));
for (int i = 0; i <= n; i++) {
mem[i] = -1;
}
int result = dfs(n, mem);
free(mem);
return result;
}
// 记忆化搜索
fn dfs(i: usize, mem: []i32) i32 {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 or i == 2) {
return @intCast(i);
}
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1) {
return mem[i];
}
// dp[i] = dp[i-1] + dp[i-2]
var count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}
// 爬楼梯:记忆化搜索
fn climbingStairsDFSMem(comptime n: usize) i32 {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
var mem = [_]i32{ -1 } ** (n + 1);
return dfs(n, &mem);
}
可视化运行
观察图 14-4 ,经过记忆化处理后,所有重叠子问题都只需计算一次,时间复杂度优化至 \(O(n)\) ,这是一个巨大的飞跃。
图 14-4 记忆化搜索对应递归树
14.1.3 方法三:动态规划¶
记忆化搜索是一种“从顶至底”的方法:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点)。之后,通过回溯逐层收集子问题的解,构建出原问题的解。
与之相反,动态规划是一种“从底至顶”的方法:从最小子问题的解开始,迭代地构建更大子问题的解,直至得到原问题的解。
由于动态规划不包含回溯过程,因此只需使用循环迭代实现,无须使用递归。在以下代码中,我们初始化一个数组 dp
来存储子问题的解,它起到了与记忆化搜索中数组 mem
相同的记录作用:
/* 爬楼梯:动态规划 */
func climbingStairsDP(n: Int) -> Int {
if n == 1 || n == 2 {
return n
}
// 初始化 dp 表,用于存储子问题的解
var dp = Array(repeating: 0, count: n + 1)
// 初始状态:预设最小子问题的解
dp[1] = 1
dp[2] = 2
// 状态转移:从较小子问题逐步求解较大子问题
for i in stride(from: 3, through: n, by: 1) {
dp[i] = dp[i - 1] + dp[i - 2]
}
return dp[n]
}
/* 爬楼梯:动态规划 */
function climbingStairsDP(n) {
if (n === 1 || n === 2) return n;
// 初始化 dp 表,用于存储子问题的解
const dp = new Array(n + 1).fill(-1);
// 初始状态:预设最小子问题的解
dp[1] = 1;
dp[2] = 2;
// 状态转移:从较小子问题逐步求解较大子问题
for (let i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
/* 爬楼梯:动态规划 */
function climbingStairsDP(n: number): number {
if (n === 1 || n === 2) return n;
// 初始化 dp 表,用于存储子问题的解
const dp = new Array(n + 1).fill(-1);
// 初始状态:预设最小子问题的解
dp[1] = 1;
dp[2] = 2;
// 状态转移:从较小子问题逐步求解较大子问题
for (let i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
/* 爬楼梯:动态规划 */
int climbingStairsDP(int n) {
if (n == 1 || n == 2) return n;
// 初始化 dp 表,用于存储子问题的解
List<int> dp = List.filled(n + 1, 0);
// 初始状态:预设最小子问题的解
dp[1] = 1;
dp[2] = 2;
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
/* 爬楼梯:动态规划 */
fn climbing_stairs_dp(n: usize) -> i32 {
// 已知 dp[1] 和 dp[2] ,返回之
if n == 1 || n == 2 { return n as i32; }
// 初始化 dp 表,用于存储子问题的解
let mut dp = vec![-1; n + 1];
// 初始状态:预设最小子问题的解
dp[1] = 1;
dp[2] = 2;
// 状态转移:从较小子问题逐步求解较大子问题
for i in 3..=n {
dp[i] = dp[i - 1] + dp[i - 2];
}
dp[n]
}
/* 爬楼梯:动态规划 */
int climbingStairsDP(int n) {
if (n == 1 || n == 2)
return n;
// 初始化 dp 表,用于存储子问题的解
int *dp = (int *)malloc((n + 1) * sizeof(int));
// 初始状态:预设最小子问题的解
dp[1] = 1;
dp[2] = 2;
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
int result = dp[n];
free(dp);
return result;
}
// 爬楼梯:动态规划
fn climbingStairsDP(comptime n: usize) i32 {
// 已知 dp[1] 和 dp[2] ,返回之
if (n == 1 or n == 2) {
return @intCast(n);
}
// 初始化 dp 表,用于存储子问题的解
var dp = [_]i32{-1} ** (n + 1);
// 初始状态:预设最小子问题的解
dp[1] = 1;
dp[2] = 2;
// 状态转移:从较小子问题逐步求解较大子问题
for (3..n + 1) |i| {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
可视化运行
图 14-5 模拟了以上代码的执行过程。
图 14-5 爬楼梯的动态规划过程
与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如,爬楼梯问题的状态定义为当前所在楼梯阶数 \(i\) 。
根据以上内容,我们可以总结出动态规划的常用术语。
- 将数组
dp
称为「\(dp\) 表」,\(dp[i]\) 表示状态 \(i\) 对应子问题的解。 - 将最小子问题对应的状态(第 \(1\) 阶和第 \(2\) 阶楼梯)称为「初始状态」。
- 将递推公式 \(dp[i] = dp[i-1] + dp[i-2]\) 称为「状态转移方程」。
14.1.4 空间优化¶
细心的读者可能发现了,由于 \(dp[i]\) 只与 \(dp[i-1]\) 和 \(dp[i-2]\) 有关,因此我们无须使用一个数组 dp
来存储所有子问题的解,而只需两个变量滚动前进即可。代码如下所示:
可视化运行
观察以上代码,由于省去了数组 dp
占用的空间,因此空间复杂度从 \(O(n)\) 降至 \(O(1)\) 。
在动态规划问题中,当前状态往往仅与前面有限个状态有关,这时我们可以只保留必要的状态,通过“降维”来节省内存空间。这种空间优化技巧被称为“滚动变量”或“滚动数组”。