""" File: n_queens.py Created Time: 2023-04-26 Author: Krahets (krahets@163.com) """ def backtrack( row: int, n: int, state: list[list[str]], res: list[list[list[str]]], cols: list[bool], diags1: list[bool], diags2: list[bool], ): """回溯算法:N 皇后""" # 当放置完所有行时,记录解 if row == n: res.append([list(row) for row in state]) return # 遍历所有列 for col in range(n): # 计算该格子对应的主对角线和次对角线 diag1 = row - col + n - 1 diag2 = row + col # 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if not cols[col] and not diags1[diag1] and not diags2[diag2]: # 尝试:将皇后放置在该格子 state[row][col] = "Q" cols[col] = diags1[diag1] = diags2[diag2] = True # 放置下一行 backtrack(row + 1, n, state, res, cols, diags1, diags2) # 回退:将该格子恢复为空位 state[row][col] = "#" cols[col] = diags1[diag1] = diags2[diag2] = False def n_queens(n: int) -> list[list[list[str]]]: """求解 N 皇后""" # 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 state = [["#" for _ in range(n)] for _ in range(n)] cols = [False] * n # 记录列是否有皇后 diags1 = [False] * (2 * n - 1) # 记录主对角线上是否有皇后 diags2 = [False] * (2 * n - 1) # 记录次对角线上是否有皇后 res = [] backtrack(0, n, state, res, cols, diags1, diags2) return res """Driver Code""" if __name__ == "__main__": n = 4 res = n_queens(n) print(f"输入棋盘长宽为 {n}") print(f"皇后放置方案共有 {len(res)} 种") for state in res: print("--------------------") for row in state: print(row)