# 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想要准确预估一段代码的运行时间,应该如何操作呢? 1. **确定运行平台**,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. **评估各种计算操作所需的运行时间**,例如加法操作 `+` 需要 1 ns ,乘法操作 `*` 需要 10 ns ,打印操作 `print()` 需要 5 ns 等。 3. **统计代码中所有的计算操作**,并将所有操作的执行时间求和,从而得到运行时间。 例如在以下代码中,输入数据大小为 $n$ : === "Python" ```python title="" # 在某运行平台下 def algorithm(n: int): a = 2 # 1 ns a = a + 1 # 1 ns a = a * 2 # 10 ns # 循环 n 次 for _ in range(n): # 1 ns print(0) # 5 ns ``` === "C++" ```cpp title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ cout << 0 << endl; // 5 ns } } ``` === "Java" ```java title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ System.out.println(0); // 5 ns } } ``` === "C#" ```csharp title="" // 在某运行平台下 void Algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ Console.WriteLine(0); // 5 ns } } ``` === "Go" ```go title="" // 在某运行平台下 func algorithm(n int) { a := 2 // 1 ns a = a + 1 // 1 ns a = a * 2 // 10 ns // 循环 n 次 for i := 0; i < n; i++ { // 1 ns fmt.Println(a) // 5 ns } } ``` === "Swift" ```swift title="" // 在某运行平台下 func algorithm(n: Int) { var a = 2 // 1 ns a = a + 1 // 1 ns a = a * 2 // 10 ns // 循环 n 次 for _ in 0 ..< n { // 1 ns print(0) // 5 ns } } ``` === "JS" ```javascript title="" // 在某运行平台下 function algorithm(n) { var a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ console.log(0); // 5 ns } } ``` === "TS" ```typescript title="" // 在某运行平台下 function algorithm(n: number): void { var a: number = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ console.log(0); // 5 ns } } ``` === "Dart" ```dart title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ print(0); // 5 ns } } ``` === "Rust" ```rust title="" // 在某运行平台下 fn algorithm(n: i32) { let mut a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for _ in 0..n { // 1 ns ,每轮都要执行 i++ println!("{}", 0); // 5 ns } } ``` === "C" ```c title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ printf("%d", 0); // 5 ns } } ``` === "Zig" ```zig title="" // 在某运行平台下 fn algorithm(n: usize) void { var a: i32 = 2; // 1 ns a += 1; // 1 ns a *= 2; // 10 ns // 循环 n 次 for (0..n) |_| { // 1 ns std.debug.print("{}\n", .{0}); // 5 ns } } ``` 根据以上方法,可以得到算法运行时间为 $(6n + 12)$ ns : $$ 1 + 1 + 10 + (1 + 5) \times n = 6n + 12 $$ 但实际上,**统计算法的运行时间既不合理也不现实**。首先,我们不希望将预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。其次,我们很难获知每种操作的运行时间,这给预估过程带来了极大的难度。 ## 统计时间增长趋势 时间复杂度分析统计的不是算法运行时间,**而是算法运行时间随着数据量变大时的增长趋势**。 “时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 $n$ ,给定三个算法函数 `A`、`B` 和 `C` : === "Python" ```python title="" # 算法 A 的时间复杂度:常数阶 def algorithm_A(n: int): print(0) # 算法 B 的时间复杂度:线性阶 def algorithm_B(n: int): for _ in range(n): print(0) # 算法 C 的时间复杂度:常数阶 def algorithm_C(n: int): for _ in range(1000000): print(0) ``` === "C++" ```cpp title="" // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { cout << 0 << endl; } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { cout << 0 << endl; } } // 算法 C 的时间复杂度:常数阶 void algorithm_C(int n) { for (int i = 0; i < 1000000; i++) { cout << 0 << endl; } } ``` === "Java" ```java title="" // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { System.out.println(0); } } // 算法 C 的时间复杂度:常数阶 void algorithm_C(int n) { for (int i = 0; i < 1000000; i++) { System.out.println(0); } } ``` === "C#" ```csharp title="" // 算法 A 的时间复杂度:常数阶 void AlgorithmA(int n) { Console.WriteLine(0); } // 算法 B 的时间复杂度:线性阶 void AlgorithmB(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // 算法 C 的时间复杂度:常数阶 void AlgorithmC(int n) { for (int i = 0; i < 1000000; i++) { Console.WriteLine(0); } } ``` === "Go" ```go title="" // 算法 A 的时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 的时间复杂度:线性阶 func algorithm_B(n int) { for i := 0; i < n; i++ { fmt.Println(0) } } // 算法 C 的时间复杂度:常数阶 func algorithm_C(n int) { for i := 0; i < 1000000; i++ { fmt.Println(0) } } ``` === "Swift" ```swift title="" // 算法 A 的时间复杂度:常数阶 func algorithmA(n: Int) { print(0) } // 算法 B 的时间复杂度:线性阶 func algorithmB(n: Int) { for _ in 0 ..< n { print(0) } } // 算法 C 的时间复杂度:常数阶 func algorithmC(n: Int) { for _ in 0 ..< 1000000 { print(0) } } ``` === "JS" ```javascript title="" // 算法 A 的时间复杂度:常数阶 function algorithm_A(n) { console.log(0); } // 算法 B 的时间复杂度:线性阶 function algorithm_B(n) { for (let i = 0; i < n; i++) { console.log(0); } } // 算法 C 的时间复杂度:常数阶 function algorithm_C(n) { for (let i = 0; i < 1000000; i++) { console.log(0); } } ``` === "TS" ```typescript title="" // 算法 A 的时间复杂度:常数阶 function algorithm_A(n: number): void { console.log(0); } // 算法 B 的时间复杂度:线性阶 function algorithm_B(n: number): void { for (let i = 0; i < n; i++) { console.log(0); } } // 算法 C 的时间复杂度:常数阶 function algorithm_C(n: number): void { for (let i = 0; i < 1000000; i++) { console.log(0); } } ``` === "Dart" ```dart title="" // 算法 A 的时间复杂度:常数阶 void algorithmA(int n) { print(0); } // 算法 B 的时间复杂度:线性阶 void algorithmB(int n) { for (int i = 0; i < n; i++) { print(0); } } // 算法 C 的时间复杂度:常数阶 void algorithmC(int n) { for (int i = 0; i < 1000000; i++) { print(0); } } ``` === "Rust" ```rust title="" // 算法 A 的时间复杂度:常数阶 fn algorithm_A(n: i32) { println!("{}", 0); } // 算法 B 的时间复杂度:线性阶 fn algorithm_B(n: i32) { for _ in 0..n { println!("{}", 0); } } // 算法 C 的时间复杂度:常数阶 fn algorithm_C(n: i32) { for _ in 0..1000000 { println!("{}", 0); } } ``` === "C" ```c title="" // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { printf("%d", 0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { printf("%d", 0); } } // 算法 C 的时间复杂度:常数阶 void algorithm_C(int n) { for (int i = 0; i < 1000000; i++) { printf("%d", 0); } } ``` === "Zig" ```zig title="" // 算法 A 的时间复杂度:常数阶 fn algorithm_A(n: usize) void { _ = n; std.debug.print("{}\n", .{0}); } // 算法 B 的时间复杂度:线性阶 fn algorithm_B(n: i32) void { for (0..n) |_| { std.debug.print("{}\n", .{0}); } } // 算法 C 的时间复杂度:常数阶 fn algorithm_C(n: i32) void { _ = n; for (0..1000000) |_| { std.debug.print("{}\n", .{0}); } } ``` 下图展示了以上三个算法函数的时间复杂度。 - 算法 `A` 只有 $1$ 个打印操作,算法运行时间不随着 $n$ 增大而增长。我们称此算法的时间复杂度为“常数阶”。 - 算法 `B` 中的打印操作需要循环 $n$ 次,算法运行时间随着 $n$ 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。 - 算法 `C` 中的打印操作需要循环 $1000000$ 次,虽然运行时间很长,但它与输入数据大小 $n$ 无关。因此 `C` 的时间复杂度和 `A` 相同,仍为“常数阶”。 ![算法 A、B 和 C 的时间增长趋势](time_complexity.assets/time_complexity_simple_example.png) 相较于直接统计算法运行时间,时间复杂度分析有哪些特点呢? - **时间复杂度能够有效评估算法效率**。例如,算法 `B` 的运行时间呈线性增长,在 $n > 1$ 时比算法 `A` 更慢,在 $n > 1000000$ 时比算法 `C` 更慢。事实上,只要输入数据大小 $n$ 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势所表达的含义。 - **时间复杂度的推算方法更简便**。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作的运行时间的统计”简化为“计算操作的数量的统计”,这样一来估算难度就大大降低了。 - **时间复杂度也存在一定的局限性**。例如,尽管算法 `A` 和 `C` 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 `B` 的时间复杂度比 `C` 高,但在输入数据大小 $n$ 较小时,算法 `B` 明显优于算法 `C` 。在这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。 ## 函数渐近上界 给定一个输入大小为 $n$ 的函数: === "Python" ```python title="" def algorithm(n: int): a = 1 # +1 a = a + 1 # +1 a = a * 2 # +1 # 循环 n 次 for i in range(n): # +1 print(0) # +1 ``` === "C++" ```cpp title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) cout << 0 << endl; // +1 } } ``` === "Java" ```java title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) System.out.println(0); // +1 } } ``` === "C#" ```csharp title="" void Algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) Console.WriteLine(0); // +1 } } ``` === "Go" ```go title="" func algorithm(n int) { a := 1 // +1 a = a + 1 // +1 a = a * 2 // +1 // 循环 n 次 for i := 0; i < n; i++ { // +1 fmt.Println(a) // +1 } } ``` === "Swift" ```swift title="" func algorithm(n: Int) { var a = 1 // +1 a = a + 1 // +1 a = a * 2 // +1 // 循环 n 次 for _ in 0 ..< n { // +1 print(0) // +1 } } ``` === "JS" ```javascript title="" function algorithm(n) { var a = 1; // +1 a += 1; // +1 a *= 2; // +1 // 循环 n 次 for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++) console.log(0); // +1 } } ``` === "TS" ```typescript title="" function algorithm(n: number): void{ var a: number = 1; // +1 a += 1; // +1 a *= 2; // +1 // 循环 n 次 for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++) console.log(0); // +1 } } ``` === "Dart" ```dart title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) print(0); // +1 } } ``` === "Rust" ```rust title="" fn algorithm(n: i32) { let mut a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for _ in 0..n { // +1(每轮都执行 i ++) println!("{}", 0); // +1 } } ``` === "C" ```c title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) printf("%d", 0); // +1 } } ``` === "Zig" ```zig title="" fn algorithm(n: usize) void { var a: i32 = 1; // +1 a += 1; // +1 a *= 2; // +1 // 循环 n 次 for (0..n) |_| { // +1(每轮都执行 i ++) std.debug.print("{}\n", .{0}); // +1 } } ``` 设算法的操作数量是一个关于输入数据大小 $n$ 的函数,记为 $T(n)$ ,则以上函数的的操作数量为: $$ T(n) = 3 + 2n $$ $T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号称为「大 $O$ 记号 big-$O$ notation」,表示函数 $T(n)$ 的「渐近上界 asymptotic upper bound」。 时间复杂度分析本质上是计算“操作数量函数 $T(n)$”的渐近上界,其具有明确的数学定义。 !!! abstract "函数渐近上界" 若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有 $T(n) \leq c \cdot f(n)$ ,则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐近上界,记为 $T(n) = O(f(n))$ 。 如下图所示,计算渐近上界就是寻找一个函数 $f(n)$ ,使得当 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别,仅相差一个常数项 $c$ 的倍数。 ![函数的渐近上界](time_complexity.assets/asymptotic_upper_bound.png) ## 推算方法 渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无须担心。因为在实际使用中,我们只需要掌握推算方法,数学意义就可以逐渐领悟。 根据定义,确定 $f(n)$ 之后,我们便可得到时间复杂度 $O(f(n))$ 。那么如何确定渐近上界 $f(n)$ 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。 ### 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,**因此操作数量 $T(n)$ 中的各种系数、常数项都可以被忽略**。根据此原则,可以总结出以下计数简化技巧。 1. **忽略 $T(n)$ 中的常数项**。因为它们都与 $n$ 无关,所以对时间复杂度不产生影响。 2. **省略所有系数**。例如,循环 $2n$ 次、$5n + 1$ 次等,都可以简化记为 $n$ 次,因为 $n$ 前面的系数对时间复杂度没有影响。 3. **循环嵌套时使用乘法**。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第 `1.` 点和第 `2.` 点的技巧。 给定一个函数,我们可以用上述技巧来统计操作数量。 === "Python" ```python title="" def algorithm(n: int): a = 1 # +0(技巧 1) a = a + n # +0(技巧 1) # +n(技巧 2) for i in range(5 * n + 1): print(0) # +n*n(技巧 3) for i in range(2 * n): for j in range(n + 1): print(0) ``` === "C++" ```cpp title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { cout << 0 << endl; } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { cout << 0 << endl; } } } ``` === "Java" ```java title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { System.out.println(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { System.out.println(0); } } } ``` === "C#" ```csharp title="" void Algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { Console.WriteLine(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { Console.WriteLine(0); } } } ``` === "Go" ```go title="" func algorithm(n int) { a := 1 // +0(技巧 1) a = a + n // +0(技巧 1) // +n(技巧 2) for i := 0; i < 5 * n + 1; i++ { fmt.Println(0) } // +n*n(技巧 3) for i := 0; i < 2 * n; i++ { for j := 0; j < n + 1; j++ { fmt.Println(0) } } } ``` === "Swift" ```swift title="" func algorithm(n: Int) { var a = 1 // +0(技巧 1) a = a + n // +0(技巧 1) // +n(技巧 2) for _ in 0 ..< (5 * n + 1) { print(0) } // +n*n(技巧 3) for _ in 0 ..< (2 * n) { for _ in 0 ..< (n + 1) { print(0) } } } ``` === "JS" ```javascript title="" function algorithm(n) { let a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (let i = 0; i < 5 * n + 1; i++) { console.log(0); } // +n*n(技巧 3) for (let i = 0; i < 2 * n; i++) { for (let j = 0; j < n + 1; j++) { console.log(0); } } } ``` === "TS" ```typescript title="" function algorithm(n: number): void { let a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (let i = 0; i < 5 * n + 1; i++) { console.log(0); } // +n*n(技巧 3) for (let i = 0; i < 2 * n; i++) { for (let j = 0; j < n + 1; j++) { console.log(0); } } } ``` === "Dart" ```dart title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { print(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { print(0); } } } ``` === "Rust" ```rust title="" fn algorithm(n: i32) { let mut a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for i in 0..(5 * n + 1) { println!("{}", 0); } // +n*n(技巧 3) for i in 0..(2 * n) { for j in 0..(n + 1) { println!("{}", 0); } } } ``` === "C" ```c title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { printf("%d", 0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { printf("%d", 0); } } } ``` === "Zig" ```zig title="" fn algorithm(n: usize) void { var a: i32 = 1; // +0(技巧 1) a = a + @as(i32, @intCast(n)); // +0(技巧 1) // +n(技巧 2) for(0..(5 * n + 1)) |_| { std.debug.print("{}\n", .{0}); } // +n*n(技巧 3) for(0..(2 * n)) |_| { for(0..(n + 1)) |_| { std.debug.print("{}\n", .{0}); } } } ``` 以下公式展示了使用上述技巧前后的统计结果,两者推出的时间复杂度都为 $O(n^2)$ 。 $$ \begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整统计 (-.-|||)} \newline & = 2n^2 + 7n + 3 \newline T(n) & = n^2 + n & \text{偷懒统计 (o.O)} \end{aligned} $$ ### 第二步:判断渐近上界 **时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以被忽略。 下表展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 $n$ 趋于无穷大时,这些常数变得无足轻重。
表