--- comments: true --- # 2.4 空间复杂度 「空间复杂度 space complexity」用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。 ## 2.4.1 算法相关空间 算法在运行过程中使用的内存空间主要包括以下几种。 - **输入空间**:用于存储算法的输入数据。 - **暂存空间**:用于存储算法在运行过程中的变量、对象、函数上下文等数据。 - **输出空间**:用于存储算法的输出数据。 一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。 暂存空间可以进一步划分为三个部分。 - **暂存数据**:用于保存算法运行过程中的各种常量、变量、对象等。 - **栈帧空间**:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。 - **指令空间**:用于保存编译后的程序指令,在实际统计中通常忽略不计。 在分析一段程序的空间复杂度时,**我们通常统计暂存数据、栈帧空间和输出数据三部分**。 ![算法使用的相关空间](space_complexity.assets/space_types.png)
图 2-15 算法使用的相关空间
=== "Python" ```python title="" class Node: """类""" def __init__(self, x: int): self.val: int = x # 节点值 self.next: Node | None = None # 指向下一节点的引用 def function() -> int: """函数""" # 执行某些操作... return 0 def algorithm(n) -> int: # 输入数据 A = 0 # 暂存数据(常量,一般用大写字母表示) b = 0 # 暂存数据(变量) node = Node(0) # 暂存数据(对象) c = function() # 栈帧空间(调用函数) return A + b + c # 输出数据 ``` === "C++" ```cpp title="" /* 结构体 */ struct Node { int val; Node *next; Node(int x) : val(x), next(nullptr) {} }; /* 函数 */ int func() { // 执行某些操作... return 0; } int algorithm(int n) { // 输入数据 const int a = 0; // 暂存数据(常量) int b = 0; // 暂存数据(变量) Node* node = new Node(0); // 暂存数据(对象) int c = func(); // 栈帧空间(调用函数) return a + b + c; // 输出数据 } ``` === "Java" ```java title="" /* 类 */ class Node { int val; Node next; Node(int x) { val = x; } } /* 函数 */ int function() { // 执行某些操作... return 0; } int algorithm(int n) { // 输入数据 final int a = 0; // 暂存数据(常量) int b = 0; // 暂存数据(变量) Node node = new Node(0); // 暂存数据(对象) int c = function(); // 栈帧空间(调用函数) return a + b + c; // 输出数据 } ``` === "C#" ```csharp title="" /* 类 */ class Node { int val; Node next; Node(int x) { val = x; } } /* 函数 */ int function() { // 执行某些操作... return 0; } int algorithm(int n) { // 输入数据 const int a = 0; // 暂存数据(常量) int b = 0; // 暂存数据(变量) Node node = new Node(0); // 暂存数据(对象) int c = function(); // 栈帧空间(调用函数) return a + b + c; // 输出数据 } ``` === "Go" ```go title="" /* 结构体 */ type node struct { val int next *node } /* 创建 node 结构体 */ func newNode(val int) *node { return &node{val: val} } /* 函数 */ func function() int { // 执行某些操作... return 0 } func algorithm(n int) int { // 输入数据 const a = 0 // 暂存数据(常量) b := 0 // 暂存数据(变量) newNode(0) // 暂存数据(对象) c := function() // 栈帧空间(调用函数) return a + b + c // 输出数据 } ``` === "Swift" ```swift title="" /* 类 */ class Node { var val: Int var next: Node? init(x: Int) { val = x } } /* 函数 */ func function() -> Int { // 执行某些操作... return 0 } func algorithm(n: Int) -> Int { // 输入数据 let a = 0 // 暂存数据(常量) var b = 0 // 暂存数据(变量) let node = Node(x: 0) // 暂存数据(对象) let c = function() // 栈帧空间(调用函数) return a + b + c // 输出数据 } ``` === "JS" ```javascript title="" /* 类 */ class Node { val; next; constructor(val) { this.val = val === undefined ? 0 : val; // 节点值 this.next = null; // 指向下一节点的引用 } } /* 函数 */ function constFunc() { // 执行某些操作 return 0; } function algorithm(n) { // 输入数据 const a = 0; // 暂存数据(常量) let b = 0; // 暂存数据(变量) const node = new Node(0); // 暂存数据(对象) const c = constFunc(); // 栈帧空间(调用函数) return a + b + c; // 输出数据 } ``` === "TS" ```typescript title="" /* 类 */ class Node { val: number; next: Node | null; constructor(val?: number) { this.val = val === undefined ? 0 : val; // 节点值 this.next = null; // 指向下一节点的引用 } } /* 函数 */ function constFunc(): number { // 执行某些操作 return 0; } function algorithm(n: number): number { // 输入数据 const a = 0; // 暂存数据(常量) let b = 0; // 暂存数据(变量) const node = new Node(0); // 暂存数据(对象) const c = constFunc(); // 栈帧空间(调用函数) return a + b + c; // 输出数据 } ``` === "Dart" ```dart title="" /* 类 */ class Node { int val; Node next; Node(this.val, [this.next]); } /* 函数 */ int function() { // 执行某些操作... return 0; } int algorithm(int n) { // 输入数据 const int a = 0; // 暂存数据(常量) int b = 0; // 暂存数据(变量) Node node = Node(0); // 暂存数据(对象) int c = function(); // 栈帧空间(调用函数) return a + b + c; // 输出数据 } ``` === "Rust" ```rust title="" use std::rc::Rc; use std::cell::RefCell; /* 结构体 */ struct Node { val: i32, next: Option图 2-16 常见的空间复杂度类型
### 1. 常数阶 $O(1)$ 常数阶常见于数量与输入数据大小 $n$ 无关的常量、变量、对象。 需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,因此不会累积占用空间,空间复杂度仍为 $O(1)$ : === "Python" ```python title="space_complexity.py" [class]{}-[func]{function} [class]{}-[func]{constant} ``` === "C++" ```cpp title="space_complexity.cpp" [class]{}-[func]{func} [class]{}-[func]{constant} ``` === "Java" ```java title="space_complexity.java" [class]{space_complexity}-[func]{function} [class]{space_complexity}-[func]{constant} ``` === "C#" ```csharp title="space_complexity.cs" [class]{space_complexity}-[func]{function} [class]{space_complexity}-[func]{constant} ``` === "Go" ```go title="space_complexity.go" [class]{}-[func]{function} [class]{}-[func]{spaceConstant} ``` === "Swift" ```swift title="space_complexity.swift" [class]{}-[func]{function} [class]{}-[func]{constant} ``` === "JS" ```javascript title="space_complexity.js" [class]{}-[func]{constFunc} [class]{}-[func]{constant} ``` === "TS" ```typescript title="space_complexity.ts" [class]{}-[func]{constFunc} [class]{}-[func]{constant} ``` === "Dart" ```dart title="space_complexity.dart" [class]{}-[func]{function} [class]{}-[func]{constant} ``` === "Rust" ```rust title="space_complexity.rs" [class]{}-[func]{function} [class]{}-[func]{constant} ``` === "C" ```c title="space_complexity.c" [class]{}-[func]{func} [class]{}-[func]{constant} ``` === "Zig" ```zig title="space_complexity.zig" [class]{}-[func]{function} [class]{}-[func]{constant} ``` ### 2. 线性阶 $O(n)$ 线性阶常见于元素数量与 $n$ 成正比的数组、链表、栈、队列等: === "Python" ```python title="space_complexity.py" [class]{}-[func]{linear} ``` === "C++" ```cpp title="space_complexity.cpp" [class]{}-[func]{linear} ``` === "Java" ```java title="space_complexity.java" [class]{space_complexity}-[func]{linear} ``` === "C#" ```csharp title="space_complexity.cs" [class]{space_complexity}-[func]{linear} ``` === "Go" ```go title="space_complexity.go" [class]{}-[func]{spaceLinear} ``` === "Swift" ```swift title="space_complexity.swift" [class]{}-[func]{linear} ``` === "JS" ```javascript title="space_complexity.js" [class]{}-[func]{linear} ``` === "TS" ```typescript title="space_complexity.ts" [class]{}-[func]{linear} ``` === "Dart" ```dart title="space_complexity.dart" [class]{}-[func]{linear} ``` === "Rust" ```rust title="space_complexity.rs" [class]{}-[func]{linear} ``` === "C" ```c title="space_complexity.c" [class]{hashTable}-[func]{} [class]{}-[func]{linear} ``` === "Zig" ```zig title="space_complexity.zig" [class]{}-[func]{linear} ``` 如图 2-17 所示,此函数的递归深度为 $n$ ,即同时存在 $n$ 个未返回的 `linear_recur()` 函数,使用 $O(n)$ 大小的栈帧空间: === "Python" ```python title="space_complexity.py" [class]{}-[func]{linear_recur} ``` === "C++" ```cpp title="space_complexity.cpp" [class]{}-[func]{linearRecur} ``` === "Java" ```java title="space_complexity.java" [class]{space_complexity}-[func]{linearRecur} ``` === "C#" ```csharp title="space_complexity.cs" [class]{space_complexity}-[func]{linearRecur} ``` === "Go" ```go title="space_complexity.go" [class]{}-[func]{spaceLinearRecur} ``` === "Swift" ```swift title="space_complexity.swift" [class]{}-[func]{linearRecur} ``` === "JS" ```javascript title="space_complexity.js" [class]{}-[func]{linearRecur} ``` === "TS" ```typescript title="space_complexity.ts" [class]{}-[func]{linearRecur} ``` === "Dart" ```dart title="space_complexity.dart" [class]{}-[func]{linearRecur} ``` === "Rust" ```rust title="space_complexity.rs" [class]{}-[func]{linear_recur} ``` === "C" ```c title="space_complexity.c" [class]{}-[func]{linearRecur} ``` === "Zig" ```zig title="space_complexity.zig" [class]{}-[func]{linearRecur} ``` ![递归函数产生的线性阶空间复杂度](space_complexity.assets/space_complexity_recursive_linear.png)图 2-17 递归函数产生的线性阶空间复杂度
### 3. 平方阶 $O(n^2)$ 平方阶常见于矩阵和图,元素数量与 $n$ 成平方关系: === "Python" ```python title="space_complexity.py" [class]{}-[func]{quadratic} ``` === "C++" ```cpp title="space_complexity.cpp" [class]{}-[func]{quadratic} ``` === "Java" ```java title="space_complexity.java" [class]{space_complexity}-[func]{quadratic} ``` === "C#" ```csharp title="space_complexity.cs" [class]{space_complexity}-[func]{quadratic} ``` === "Go" ```go title="space_complexity.go" [class]{}-[func]{spaceQuadratic} ``` === "Swift" ```swift title="space_complexity.swift" [class]{}-[func]{quadratic} ``` === "JS" ```javascript title="space_complexity.js" [class]{}-[func]{quadratic} ``` === "TS" ```typescript title="space_complexity.ts" [class]{}-[func]{quadratic} ``` === "Dart" ```dart title="space_complexity.dart" [class]{}-[func]{quadratic} ``` === "Rust" ```rust title="space_complexity.rs" [class]{}-[func]{quadratic} ``` === "C" ```c title="space_complexity.c" [class]{}-[func]{quadratic} ``` === "Zig" ```zig title="space_complexity.zig" [class]{}-[func]{quadratic} ``` 如图 2-18 所示,该函数的递归深度为 $n$ ,在每个递归函数中都初始化了一个数组,长度分别为 $n$、$n-1$、$\dots$、$2$、$1$ ,平均长度为 $n / 2$ ,因此总体占用 $O(n^2)$ 空间: === "Python" ```python title="space_complexity.py" [class]{}-[func]{quadratic_recur} ``` === "C++" ```cpp title="space_complexity.cpp" [class]{}-[func]{quadraticRecur} ``` === "Java" ```java title="space_complexity.java" [class]{space_complexity}-[func]{quadraticRecur} ``` === "C#" ```csharp title="space_complexity.cs" [class]{space_complexity}-[func]{quadraticRecur} ``` === "Go" ```go title="space_complexity.go" [class]{}-[func]{spaceQuadraticRecur} ``` === "Swift" ```swift title="space_complexity.swift" [class]{}-[func]{quadraticRecur} ``` === "JS" ```javascript title="space_complexity.js" [class]{}-[func]{quadraticRecur} ``` === "TS" ```typescript title="space_complexity.ts" [class]{}-[func]{quadraticRecur} ``` === "Dart" ```dart title="space_complexity.dart" [class]{}-[func]{quadraticRecur} ``` === "Rust" ```rust title="space_complexity.rs" [class]{}-[func]{quadratic_recur} ``` === "C" ```c title="space_complexity.c" [class]{}-[func]{quadraticRecur} ``` === "Zig" ```zig title="space_complexity.zig" [class]{}-[func]{quadraticRecur} ``` ![递归函数产生的平方阶空间复杂度](space_complexity.assets/space_complexity_recursive_quadratic.png)图 2-18 递归函数产生的平方阶空间复杂度
### 4. 指数阶 $O(2^n)$ 指数阶常见于二叉树。观察图 2-19 ,高度为 $n$ 的“满二叉树”的节点数量为 $2^n - 1$ ,占用 $O(2^n)$ 空间: === "Python" ```python title="space_complexity.py" [class]{}-[func]{build_tree} ``` === "C++" ```cpp title="space_complexity.cpp" [class]{}-[func]{buildTree} ``` === "Java" ```java title="space_complexity.java" [class]{space_complexity}-[func]{buildTree} ``` === "C#" ```csharp title="space_complexity.cs" [class]{space_complexity}-[func]{buildTree} ``` === "Go" ```go title="space_complexity.go" [class]{}-[func]{buildTree} ``` === "Swift" ```swift title="space_complexity.swift" [class]{}-[func]{buildTree} ``` === "JS" ```javascript title="space_complexity.js" [class]{}-[func]{buildTree} ``` === "TS" ```typescript title="space_complexity.ts" [class]{}-[func]{buildTree} ``` === "Dart" ```dart title="space_complexity.dart" [class]{}-[func]{buildTree} ``` === "Rust" ```rust title="space_complexity.rs" [class]{}-[func]{build_tree} ``` === "C" ```c title="space_complexity.c" [class]{}-[func]{buildTree} ``` === "Zig" ```zig title="space_complexity.zig" [class]{}-[func]{buildTree} ``` ![满二叉树产生的指数阶空间复杂度](space_complexity.assets/space_complexity_exponential.png)图 2-19 满二叉树产生的指数阶空间复杂度
### 5. 对数阶 $O(\log n)$ 对数阶常见于分治算法。例如归并排序,输入长度为 $n$ 的数组,每轮递归将数组从中点划分为两半,形成高度为 $\log n$ 的递归树,使用 $O(\log n)$ 栈帧空间。 再例如将数字转化为字符串,输入一个正整数 $n$ ,它的位数为 $\log_{10} n + 1$ ,即对应字符串长度为 $\log_{10} n + 1$ ,因此空间复杂度为 $O(\log_{10} n + 1) = O(\log n)$ 。 ## 2.4.4 权衡时间与空间 理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常是非常困难的。 **降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然**。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。 选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。