14.2. 动态规划问题特性¶
在上节中,我们学习了动态规划问题的暴力解法,从递归树中观察到海量的重叠子问题,以及了解到动态规划是如何通过记录解来优化时间复杂度的。
实际上,动态规划最常用来求解最优方案问题,例如寻找最短路径、最大利润、最少时间等。这类问题不仅包含重叠子问题,往往还具有另外两大特性:最优子结构、无后效性。
14.2.1. 最优子结构¶
我们对爬楼梯问题稍作改动,使之更加适合展示最优子结构概念。
爬楼梯最小代价
给定一个楼梯,你每步可以上 \(1\) 阶或者 \(2\) 阶,每一阶楼梯上都贴有一个非负整数,表示你在该台阶所需要付出的代价。给定一个非负整数数组 \(cost\) ,其中 \(cost[i]\) 表示在第 \(i\) 个台阶需要付出的代价,\(cost[0]\) 为地面起始点。请计算最少需要付出多少代价才能到达顶部?
如下图所示,若第 \(1\) , \(2\) , \(3\) 阶的代价分别为 \(1\) , \(10\) , \(1\) ,则从地面爬到第 \(3\) 阶的最小代价为 \(2\) 。
Fig. 爬到第 3 阶的最小代价
设 \(dp[i]\) 为爬到第 \(i\) 阶累计付出的代价,由于第 \(i\) 阶只可能从 \(i - 1\) 阶或 \(i - 2\) 阶走来,因此 \(dp[i]\) 只可能等于 \(dp[i - 1] + cost[i]\) 或 \(dp[i - 2] + cost[i]\) 。为了尽可能减少代价,我们应该选择两者中较小的那一个,即:
这便可以引出「最优子结构」的含义:原问题的最优解是从子问题的最优解构建得来的。本题显然具有最优子结构:我们从两个子问题最优解 \(dp[i-1]\) , \(dp[i-2]\) 中挑选出较优的那一个,并用它构建出原问题 \(dp[i]\) 的最优解。
那么,上节的爬楼梯题目有没有最优子结构呢?它要求解的是方案数量,看似是一个计数问题,但如果换一种问法:求解最大方案数量。我们意外地发现,虽然题目修改前后是等价的,但最优子结构浮现出来了:第 \(n\) 阶最大方案数量等于第 \(n-1\) 阶和第 \(n-2\) 阶最大方案数量之和。所以说,最优子结构的解释方式比较灵活,在不同问题中会有不同的含义。
根据以上状态转移方程,以及初始状态 \(dp[1] = cost[1]\) , \(dp[2] = cost[2]\) ,我们可以得出动态规划解题代码。
/* 爬楼梯最小代价:动态规划 */
int minCostClimbingStairsDP(int[] cost) {
int n = cost.length - 1;
if (n == 1 || n == 2)
return cost[n];
// 初始化 dp 表,用于存储子问题的解
int[] dp = new int[n + 1];
// 初始状态:预设最小子问题的解
dp[1] = cost[1];
dp[2] = cost[2];
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
}
return dp[n];
}
/* 爬楼梯最小代价:动态规划 */
int minCostClimbingStairsDP(vector<int> &cost) {
int n = cost.size() - 1;
if (n == 1 || n == 2)
return cost[n];
// 初始化 dp 表,用于存储子问题的解
vector<int> dp(n + 1);
// 初始状态:预设最小子问题的解
dp[1] = cost[1];
dp[2] = cost[2];
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
}
return dp[n];
}
def min_cost_climbing_stairs_dp(cost: list[int]) -> int:
"""爬楼梯最小代价:动态规划"""
n = len(cost) - 1
if n == 1 or n == 2:
return cost[n]
# 初始化 dp 表,用于存储子问题的解
dp = [0] * (n + 1)
# 初始状态:预设最小子问题的解
dp[1], dp[2] = cost[1], cost[2]
# 状态转移:从较小子问题逐步求解较大子问题
for i in range(3, n + 1):
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
return dp[n]
/* 爬楼梯最小代价:动态规划 */
int minCostClimbingStairsDP(int[] cost) {
int n = cost.Length - 1;
if (n == 1 || n == 2)
return cost[n];
// 初始化 dp 表,用于存储子问题的解
int[] dp = new int[n + 1];
// 初始状态:预设最小子问题的解
dp[1] = cost[1];
dp[2] = cost[2];
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i] = Math.Min(dp[i - 1], dp[i - 2]) + cost[i];
}
return dp[n];
}
Fig. 爬楼梯最小代价的动态规划过程
这道题同样也可以进行状态压缩,将一维压缩至零维,使得空间复杂度从 \(O(n)\) 降低至 \(O(1)\) 。
14.2.2. 无后效性¶
「无后效性」是动态规划能够有效解决问题的重要特性之一,定义为:给定一个确定的状态,它的未来发展只与当前状态有关,而与当前状态过去所经历过的所有状态无关。
以爬楼梯问题为例,给定状态 \(i\) ,它会发展出状态 \(i+1\) 和状态 \(i+2\) ,分别对应跳 \(1\) 步和跳 \(2\) 步。在做出这两种选择时,我们无需考虑状态 \(i\) 之前的状态,即它们对状态 \(i\) 的未来没有影响。
然而,如果我们向爬楼梯问题添加一个约束,情况就不一样了。
带约束爬楼梯
给定一个共有 \(n\) 阶的楼梯,你每步可以上 \(1\) 阶或者 \(2\) 阶,但不能连续两轮跳 \(1\) 阶,请问有多少种方案可以爬到楼顶。
例如,爬上第 \(3\) 阶仅剩 \(2\) 种可行方案,其中连续三次跳 \(1\) 阶的方案不满足约束条件,因此被舍弃。
Fig. 带约束爬到第 3 阶的方案数量
在该问题中,下一步选择不能由当前状态(当前楼梯阶数)独立决定,还和前一个状态(上轮楼梯阶数)有关。如果上一轮是跳 \(1\) 阶上来的,那么下一轮就必须跳 \(2\) 阶。
不难发现,此问题已不满足无后效性,状态转移方程 \(dp[i] = dp[i-1] + dp[i-2]\) 也失效了,因为 \(dp[i-1]\) 代表本轮跳 \(1\) 阶,但其中包含了许多“上一轮跳 \(1\) 阶上来的”方案,而为了满足约束,我们不能将 \(dp[i-1]\) 直接计入 \(dp[i]\) 中。
为了解决该问题,我们需要扩展状态定义:状态 \([i, j]\) 表示处在第 \(i\) 阶、并且上一轮跳了 \(j\) 阶,其中 \(j \in \{1, 2\}\) 。此状态定义有效地区分了上一轮跳了 \(1\) 阶还是 \(2\) 阶,我们可以据此来决定下一步该怎么跳:
- 当 \(j\) 等于 \(1\) ,即上一轮跳了 \(1\) 阶时,这一轮只能选择跳 \(2\) 阶;
- 当 \(j\) 等于 \(2\) ,即上一轮跳了 \(2\) 阶时,这一轮可选择跳 \(1\) 阶或跳 \(2\) 阶;
在该定义下,\(dp[i, j]\) 表示状态 \([i, j]\) 对应的方案数。由此,我们便能推导出以下的状态转移方程:
Fig. 考虑约束下的递推关系
最终,返回 \(dp[n, 1] + dp[n, 2]\) 即可,两者之和代表爬到第 \(n\) 阶的方案总数。
/* 带约束爬楼梯:动态规划 */
int climbingStairsConstraintDP(int n) {
if (n == 1 || n == 2) {
return n;
}
// 初始化 dp 表,用于存储子问题的解
int[][] dp = new int[n + 1][3];
// 初始状态:预设最小子问题的解
dp[1][1] = 1;
dp[1][2] = 0;
dp[2][1] = 0;
dp[2][2] = 1;
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i][1] = dp[i - 1][2];
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
}
return dp[n][1] + dp[n][2];
}
/* 带约束爬楼梯:动态规划 */
int climbingStairsConstraintDP(int n) {
if (n == 1 || n == 2) {
return n;
}
// 初始化 dp 表,用于存储子问题的解
vector<vector<int>> dp(n + 1, vector<int>(3, 0));
// 初始状态:预设最小子问题的解
dp[1][1] = 1;
dp[1][2] = 0;
dp[2][1] = 0;
dp[2][2] = 1;
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i][1] = dp[i - 1][2];
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
}
return dp[n][1] + dp[n][2];
}
def climbing_stairs_constraint_dp(n: int) -> int:
"""带约束爬楼梯:动态规划"""
if n == 1 or n == 2:
return n
# 初始化 dp 表,用于存储子问题的解
dp = [[0] * 3 for _ in range(n + 1)]
# 初始状态:预设最小子问题的解
dp[1][1], dp[1][2] = 1, 0
dp[2][1], dp[2][2] = 0, 1
# 状态转移:从较小子问题逐步求解较大子问题
for i in range(3, n + 1):
dp[i][1] = dp[i - 1][2]
dp[i][2] = dp[i - 2][1] + dp[i - 2][2]
return dp[n][1] + dp[n][2]
/* 带约束爬楼梯:动态规划 */
int climbingStairsConstraintDP(int n) {
if (n == 1 || n == 2) {
return n;
}
// 初始化 dp 表,用于存储子问题的解
int[,] dp = new int[n + 1, 3];
// 初始状态:预设最小子问题的解
dp[1, 1] = 1;
dp[1, 2] = 0;
dp[2, 1] = 0;
dp[2, 2] = 1;
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i, 1] = dp[i - 1, 2];
dp[i, 2] = dp[i - 2, 1] + dp[i - 2, 2];
}
return dp[n, 1] + dp[n, 2];
}
在上面的案例中,由于仅需多考虑前面一个状态,我们仍然可以通过扩展状态定义,使得问题恢复无后效性。然而,许多问题具有非常严重的“有后效性”,例如:
爬楼梯与障碍生成
给定一个共有 \(n\) 阶的楼梯,你每步可以上 \(1\) 阶或者 \(2\) 阶。规定当爬到第 \(i\) 阶时,系统自动会给第 \(2i\) 阶上放上障碍物,之后所有轮都不允许跳到第 \(2i\) 阶上。例如,前两轮分别跳到了第 \(2, 3\) 阶上,则之后就不能跳到第 \(4, 6\) 阶上。请问有多少种方案可以爬到楼顶。
在这个问题中,下次跳跃依赖于过去所有的状态,因为每一次跳跃都会在更高的阶梯上设置障碍,并影响未来的跳跃。对于这类问题,动态规划往往难以解决,或是因为计算复杂度过高而难以应用。
实际上,许多复杂的组合优化问题(例如著名的旅行商问题)都不满足无后效性。对于这类问题,我们通常会选择使用其他方法,例如启发式搜索、遗传算法、强化学习等,从而降低时间复杂度,在有限时间内得到能够接受的局部最优解。