# 全排列问题 全排列问题是回溯算法的一个典型应用。它的定义是在给定一个集合(如一个数组或字符串)的情况下,找出这个集合中元素的所有可能的排列。 下表列举了几个示例数据,包括输入数组和对应的所有排列。
| 输入数组 | 所有排列 | | :---------- | :----------------------------------------------------------------- | | $[1]$ | $[1]$ | | $[1, 2]$ | $[1, 2], [2, 1]$ | | $[1, 2, 3]$ | $[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]$ |
## 无相等元素的情况 !!! question 输入一个整数数组,数组中不包含重复元素,返回所有可能的排列。 **从回溯算法的角度看,我们可以把生成排列的过程想象成一系列选择的结果**。假设输入数组为 $[1, 2, 3]$ ,如果我们先选择 $1$ 、再选择 $3$ 、最后选择 $2$ ,则获得排列 $[1, 3, 2]$ 。回退表示撤销一个选择,之后继续尝试其他选择。 从回溯算法代码的角度看,候选集合 `choices` 是输入数组中的所有元素,状态 `state` 是直至目前已被选择的元素。注意,每个元素只允许被选择一次,**因此在遍历选择时,应当排除已经选择过的元素**。 如下图所示,我们可以将搜索过程展开成一个递归树,树中的每个节点代表当前状态 `state` 。从根节点开始,经过三轮选择后到达叶节点,每个叶节点都对应一个排列。 ![全排列的递归树](permutations_problem.assets/permutations_i.png) ### 代码实现 想清楚以上信息之后,我们就可以在框架代码中做“完形填空”了。为了缩短代码行数,我们不单独实现框架代码中的各个函数,而是将他们展开在 `backtrack()` 函数中。 === "Java" ```java title="permutations_i.java" [class]{permutations_i}-[func]{backtrack} [class]{permutations_i}-[func]{permutationsI} ``` === "C++" ```cpp title="permutations_i.cpp" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsI} ``` === "Python" ```python title="permutations_i.py" [class]{}-[func]{backtrack} [class]{}-[func]{permutations_i} ``` === "Go" ```go title="permutations_i.go" [class]{}-[func]{backtrackI} [class]{}-[func]{permutationsI} ``` === "JavaScript" ```javascript title="permutations_i.js" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsI} ``` === "TypeScript" ```typescript title="permutations_i.ts" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsI} ``` === "C" ```c title="permutations_i.c" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsI} ``` === "C#" ```csharp title="permutations_i.cs" [class]{permutations_i}-[func]{backtrack} [class]{permutations_i}-[func]{permutationsI} ``` === "Swift" ```swift title="permutations_i.swift" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsI} ``` === "Zig" ```zig title="permutations_i.zig" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsI} ``` === "Dart" ```dart title="permutations_i.dart" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsI} ``` ### 重复选择剪枝 需要重点关注的是,我们引入了一个布尔型数组 `selected` ,它的长度与输入数组长度相等,其中 `selected[i]` 表示 `choices[i]` 是否已被选择。我们利用 `selected` 避免某个元素被重复选择,从而实现剪枝。 如下图所示,假设我们第一轮选择 1 ,第二轮选择 3 ,第三轮选择 2 ,则需要在第二轮剪掉元素 1 的分支,在第三轮剪掉元素 1, 3 的分支。**此剪枝操作可将搜索空间大小从 $O(n^n)$ 降低至 $O(n!)$** 。 ![全排列剪枝示例](permutations_problem.assets/permutations_i_pruning.png) ## 考虑相等元素的情况 !!! question 输入一个整数数组,**数组中可能包含重复元素**,返回所有不重复的排列。 假设输入数组为 $[1, 1, 2]$ 。为了方便区分两个重复的元素 $1$ ,接下来我们将第二个元素记为 $\hat{1}$ 。如下图所示,上述方法生成的排列有一半都是重复的。 ![重复排列](permutations_problem.assets/permutations_ii.png) 那么,如何去除重复的排列呢?最直接地,我们可以借助一个哈希表,直接对排列结果进行去重。然而这样做不够优雅,**因为生成重复排列的搜索分支是没有必要的,应当被提前识别并剪枝**,这样可以进一步提升算法效率。 观察发现,在第一轮中,选择 $1$ 或选择 $\hat{1}$ 是等价的,因为在这两个选择之下生成的所有排列都是重复的。因此,我们应该把 $\hat{1}$ 剪枝掉。同理,在第一轮选择 $2$ 后,第二轮选择中的 $1$ 和 $\hat{1}$ 也会产生重复分支,因此也需要将第二轮的 $\hat{1}$ 剪枝。 本质上看,**我们的目标是实现在某一轮选择中,多个相等的元素仅被选择一次**。 ![重复排列剪枝](permutations_problem.assets/permutations_ii_pruning.png) ### 代码实现 在上一题的代码的基础上,我们考虑在每一轮选择中开启一个哈希表 `duplicated` ,用于记录该轮中已经尝试过的元素,并将重复元素剪枝。 === "Java" ```java title="permutations_ii.java" [class]{permutations_ii}-[func]{backtrack} [class]{permutations_ii}-[func]{permutationsII} ``` === "C++" ```cpp title="permutations_ii.cpp" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsII} ``` === "Python" ```python title="permutations_ii.py" [class]{}-[func]{backtrack} [class]{}-[func]{permutations_ii} ``` === "Go" ```go title="permutations_ii.go" [class]{}-[func]{backtrackII} [class]{}-[func]{permutationsII} ``` === "JavaScript" ```javascript title="permutations_ii.js" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsII} ``` === "TypeScript" ```typescript title="permutations_ii.ts" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsII} ``` === "C" ```c title="permutations_ii.c" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsII} ``` === "C#" ```csharp title="permutations_ii.cs" [class]{permutations_ii}-[func]{backtrack} [class]{permutations_ii}-[func]{permutationsII} ``` === "Swift" ```swift title="permutations_ii.swift" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsII} ``` === "Zig" ```zig title="permutations_ii.zig" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsII} ``` === "Dart" ```dart title="permutations_ii.dart" [class]{}-[func]{backtrack} [class]{}-[func]{permutationsII} ``` ### 两种剪枝对比 注意,虽然 `selected` 和 `duplicated` 都起到剪枝的作用,但他们剪掉的是不同的分支: - **剪枝条件一**:整个搜索过程中只有一个 `selected` 。它记录的是当前状态中包含哪些元素,作用是避免某个元素在 `state` 中重复出现。 - **剪枝条件二**:每轮选择(即每个开启的 `backtrack` 函数)都包含一个 `duplicated` 。它记录的是在遍历中哪些元素已被选择过,作用是保证相等元素只被选择一次,以避免产生重复的搜索分支。 下图展示了两个剪枝条件的生效范围。注意,树中的每个节点代表一个选择,从根节点到叶节点的路径上的各个节点构成一个排列。 ![两种剪枝条件的作用范围](permutations_problem.assets/permutations_ii_pruning_summary.png) ### 复杂度分析 假设元素两两之间互不相同,则 $n$ 个元素共有 $n!$ 种排列(阶乘);在记录结果时,需要复制长度为 $n$ 的列表,使用 $O(n)$ 时间。因此,**时间复杂度为 $O(n!n)$** 。 最大递归深度为 $n$ ,使用 $O(n)$ 栈帧空间。`selected` 使用 $O(n)$ 空间。同一时刻最多共有 $n$ 个 `duplicated` ,使用 $O(n^2)$ 空间。因此,**全排列 I 的空间复杂度为 $O(n)$ ,全排列 II 的空间复杂度为 $O(n^2)$** 。