--- comments: true --- # 13.1.   初探动态规划 「动态规划 Dynamic Programming」是一种用于解决复杂问题的优化算法,它把一个问题分解为一系列更小的子问题,并把子问题的解存储起来以供后续使用,从而避免了重复计算,提升了解题效率。 在本节中,我们先从一个动态规划经典例题入手,了解动态规划是如何高效地求解问题的。 !!! question "爬楼梯" 给定一个共有 $n$ 阶的楼梯,你每步可以上 $1$ 阶或者 $2$ 阶,请问有多少种方案可以爬到楼顶。 如下图所示,对于一个 $3$ 阶楼梯,共有 $3$ 种方案可以爬到楼顶。 ![爬到第 3 阶的方案数量](intro_to_dynamic_programming.assets/climbing_stairs_example.png)

Fig. 爬到第 3 阶的方案数量

本题的目标是求解方案数量,**我们可以考虑通过回溯来穷举所有可能性**。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 $1$ 阶或 $2$ 阶,每当到达楼梯顶部时就将方案数量加 $1$ ,当越过楼梯顶部时就将其剪枝。 === "Java" ```java title="climbing_stairs_backtrack.java" /* 回溯 */ void backtrack(List choices, int state, int n, List res) { // 当爬到第 n 阶时,方案数量加 1 if (state == n) res.set(0, res.get(0) + 1); // 遍历所有选择 for (Integer choice : choices) { // 剪枝:不允许越过第 n 阶 if (state + choice > n) break; // 尝试:做出选择,更新状态 backtrack(choices, state + choice, n, res); // 回退 } } /* 爬楼梯:回溯 */ int climbingStairsBacktrack(int n) { List choices = Arrays.asList(1, 2); // 可选择向上爬 1 或 2 阶 int state = 0; // 从第 0 阶开始爬 List res = new ArrayList<>(); res.add(0); // 使用 res[0] 记录方案数量 backtrack(choices, state, n, res); return res.get(0); } ``` === "C++" ```cpp title="climbing_stairs_backtrack.cpp" /* 回溯 */ void backtrack(vector &choices, int state, int n, vector &res) { // 当爬到第 n 阶时,方案数量加 1 if (state == n) res[0]++; // 遍历所有选择 for (auto &choice : choices) { // 剪枝:不允许越过第 n 阶 if (state + choice > n) break; // 尝试:做出选择,更新状态 backtrack(choices, state + choice, n, res); // 回退 } } /* 爬楼梯:回溯 */ int climbingStairsBacktrack(int n) { vector choices = {1, 2}; // 可选择向上爬 1 或 2 阶 int state = 0; // 从第 0 阶开始爬 vector res = {0}; // 使用 res[0] 记录方案数量 backtrack(choices, state, n, res); return res[0]; } ``` === "Python" ```python title="climbing_stairs_backtrack.py" def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int: """回溯""" # 当爬到第 n 阶时,方案数量加 1 if state == n: res[0] += 1 # 遍历所有选择 for choice in choices: # 剪枝:不允许越过第 n 阶 if state + choice > n: break # 尝试:做出选择,更新状态 backtrack(choices, state + choice, n, res) # 回退 def climbing_stairs_backtrack(n: int) -> int: """爬楼梯:回溯""" choices = [1, 2] # 可选择向上爬 1 或 2 阶 state = 0 # 从第 0 阶开始爬 res = [0] # 使用 res[0] 记录方案数量 backtrack(choices, state, n, res) return res[0] ``` === "Go" ```go title="climbing_stairs_backtrack.go" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "JavaScript" ```javascript title="climbing_stairs_backtrack.js" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "TypeScript" ```typescript title="climbing_stairs_backtrack.ts" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "C" ```c title="climbing_stairs_backtrack.c" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "C#" ```csharp title="climbing_stairs_backtrack.cs" [class]{climbing_stairs_backtrack}-[func]{backtrack} [class]{climbing_stairs_backtrack}-[func]{climbingStairsBacktrack} ``` === "Swift" ```swift title="climbing_stairs_backtrack.swift" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "Zig" ```zig title="climbing_stairs_backtrack.zig" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` === "Dart" ```dart title="climbing_stairs_backtrack.dart" [class]{}-[func]{backtrack} [class]{}-[func]{climbingStairsBacktrack} ``` ## 13.1.1.   方法一:暴力搜索 回溯算法通常并不显式地对问题进行拆解,而是将问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。 对于本题,我们可以尝试将问题拆解为更小的子问题。设爬到第 $i$ 阶共有 $dp[i]$ 种方案,那么 $dp[i]$ 就是原问题,其子问题包括: $$ dp[i-1] , dp[i-2] , \cdots , dp[2] , dp[1] $$ 由于每轮只能上 $1$ 阶或 $2$ 阶,因此当我们站在第 $i$ 阶楼梯上时,上一轮只可能站在第 $i - 1$ 阶或第 $i - 2$ 阶上,换句话说,我们只能从第 $i -1$ 阶或第 $i - 2$ 阶前往第 $i$ 阶。因此,**爬到第 $i - 1$ 阶的方案数加上爬到第 $i - 2$ 阶的方案数就等于爬到第 $i$ 阶的方案数**,即: $$ dp[i] = dp[i-1] + dp[i-2] $$ ![方案数量递推关系](intro_to_dynamic_programming.assets/climbing_stairs_state_transfer.png)

Fig. 方案数量递推关系

也就是说,在爬楼梯问题中,**各个子问题之间不是相互独立的,原问题的解可以由子问题的解构成**。 我们可以基于此递推公式写出暴力搜索代码:以 $dp[n]$ 为起始点,**从顶至底地将一个较大问题拆解为两个较小问题的和**,直至到达最小子问题 $dp[1]$ 和 $dp[2]$ 时返回。其中,最小子问题的解是已知的,即爬到第 $1$ , $2$ 阶分别有 $1$ , $2$ 种方案。 观察以下代码,它与回溯解法都属于深度优先搜索,但比回溯算法更加简洁。 === "Java" ```java title="climbing_stairs_dfs.java" /* 搜索 */ int dfs(int i) { // 已知 dp[1] 和 dp[2] ,返回之 if (i == 1 || i == 2) return i; // dp[i] = dp[i-1] + dp[i-2] int count = dfs(i - 1) + dfs(i - 2); return count; } /* 爬楼梯:搜索 */ int climbingStairsDFS(int n) { return dfs(n); } ``` === "C++" ```cpp title="climbing_stairs_dfs.cpp" /* 搜索 */ int dfs(int i) { // 已知 dp[1] 和 dp[2] ,返回之 if (i == 1 || i == 2) return i; // dp[i] = dp[i-1] + dp[i-2] int count = dfs(i - 1) + dfs(i - 2); return count; } /* 爬楼梯:搜索 */ int climbingStairsDFS(int n) { return dfs(n); } ``` === "Python" ```python title="climbing_stairs_dfs.py" def dfs(i: int) -> int: """搜索""" # 已知 dp[1] 和 dp[2] ,返回之 if i == 1 or i == 2: return i # dp[i] = dp[i-1] + dp[i-2] count = dfs(i - 1) + dfs(i - 2) return count def climbing_stairs_dfs(n: int) -> int: """爬楼梯:搜索""" return dfs(n) ``` === "Go" ```go title="climbing_stairs_dfs.go" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "JavaScript" ```javascript title="climbing_stairs_dfs.js" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "TypeScript" ```typescript title="climbing_stairs_dfs.ts" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "C" ```c title="climbing_stairs_dfs.c" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "C#" ```csharp title="climbing_stairs_dfs.cs" [class]{climbing_stairs_dfs}-[func]{dfs} [class]{climbing_stairs_dfs}-[func]{climbingStairsDFS} ``` === "Swift" ```swift title="climbing_stairs_dfs.swift" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "Zig" ```zig title="climbing_stairs_dfs.zig" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` === "Dart" ```dart title="climbing_stairs_dfs.dart" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFS} ``` 下图展示了该方法形成的递归树。对于问题 $dp[n]$ ,递归树的深度为 $n$ ,时间复杂度为 $O(2^n)$ 。指数阶的运行时间增长地非常快,如果我们输入一个比较大的 $n$ ,则会陷入漫长的等待之中。 ![爬楼梯对应递归树](intro_to_dynamic_programming.assets/climbing_stairs_dfs_tree.png)

Fig. 爬楼梯对应递归树

实际上,**指数阶的时间复杂度是由于「重叠子问题」导致的**。例如,问题 $dp[9]$ 被分解为子问题 $dp[8]$ 和 $dp[7]$ ,问题 $dp[8]$ 被分解为子问题 $dp[7]$ 和 $dp[6]$ ,两者都包含子问题 $dp[7]$ ,而子问题中又包含更小的重叠子问题,子子孙孙无穷尽也,绝大部分计算资源都浪费在这些重叠的问题上。 ## 13.1.2.   方法二:记忆化搜索 为了提升算法效率,**我们希望所有的重叠子问题都只被计算一次**。具体来说,考虑借助一个数组 `mem` 来记录每个子问题的解,并在搜索过程中这样做: - 当首次计算 $dp[i]$ 时,我们将其记录至 `mem[i]` ,以便之后使用; - 当再次需要计算 $dp[i]$ 时,我们便可直接从 `mem[i]` 中获取结果,从而将重叠子问题剪枝; === "Java" ```java title="climbing_stairs_dfs_mem.java" /* 记忆化搜索 */ int dfs(int i, int[] mem) { // 已知 dp[1] 和 dp[2] ,返回之 if (i == 1 || i == 2) return i; // 若存在记录 dp[i] ,则直接返回之 if (mem[i] != -1) return mem[i]; // dp[i] = dp[i-1] + dp[i-2] int count = dfs(i - 1, mem) + dfs(i - 2, mem); // 记录 dp[i] mem[i] = count; return count; } /* 爬楼梯:记忆化搜索 */ int climbingStairsDFSMem(int n) { // mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录 int[] mem = new int[n + 1]; Arrays.fill(mem, -1); return dfs(n, mem); } ``` === "C++" ```cpp title="climbing_stairs_dfs_mem.cpp" /* 记忆化搜索 */ int dfs(int i, vector &mem) { // 已知 dp[1] 和 dp[2] ,返回之 if (i == 1 || i == 2) return i; // 若存在记录 dp[i] ,则直接返回之 if (mem[i] != -1) return mem[i]; // dp[i] = dp[i-1] + dp[i-2] int count = dfs(i - 1, mem) + dfs(i - 2, mem); // 记录 dp[i] mem[i] = count; return count; } /* 爬楼梯:记忆化搜索 */ int climbingStairsDFSMem(int n) { // mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录 vector mem(n + 1, -1); return dfs(n, mem); } ``` === "Python" ```python title="climbing_stairs_dfs_mem.py" def dfs(i: int, mem: list[int]) -> int: """记忆化搜索""" # 已知 dp[1] 和 dp[2] ,返回之 if i == 1 or i == 2: return i # 若存在记录 dp[i] ,则直接返回之 if mem[i] != -1: return mem[i] # dp[i] = dp[i-1] + dp[i-2] count = dfs(i - 1, mem) + dfs(i - 2, mem) # 记录 dp[i] mem[i] = count return count def climbing_stairs_dfs_mem(n: int) -> int: """爬楼梯:记忆化搜索""" # mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录 mem = [-1] * (n + 1) return dfs(n, mem) ``` === "Go" ```go title="climbing_stairs_dfs_mem.go" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "JavaScript" ```javascript title="climbing_stairs_dfs_mem.js" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "TypeScript" ```typescript title="climbing_stairs_dfs_mem.ts" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "C" ```c title="climbing_stairs_dfs_mem.c" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "C#" ```csharp title="climbing_stairs_dfs_mem.cs" [class]{climbing_stairs_dfs_mem}-[func]{dfs} [class]{climbing_stairs_dfs_mem}-[func]{climbingStairsDFSMem} ``` === "Swift" ```swift title="climbing_stairs_dfs_mem.swift" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "Zig" ```zig title="climbing_stairs_dfs_mem.zig" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` === "Dart" ```dart title="climbing_stairs_dfs_mem.dart" [class]{}-[func]{dfs} [class]{}-[func]{climbingStairsDFSMem} ``` 观察下图,**经过记忆化处理后,所有重叠子问题都只需被计算一次,时间复杂度被优化至 $O(n)$** ,这是一个巨大的飞跃。实际上,如果不考虑递归带来的额外开销,记忆化搜索解法已经几乎等同于动态规划解法的时间效率。 ![记忆化搜索对应递归树](intro_to_dynamic_programming.assets/climbing_stairs_dfs_memo_tree.png)

Fig. 记忆化搜索对应递归树

## 13.1.3.   方法三:动态规划 **记忆化搜索是一种“从顶至底”的方法**:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点);最终通过回溯将子问题的解逐层收集,得到原问题的解。 **我们也可以直接“从底至顶”进行求解**,得到标准的动态规划解法:从最小子问题开始,迭代地求解较大子问题,直至得到原问题的解。 由于动态规划不包含回溯过程,因此无需使用递归,而可以直接基于递推实现。我们初始化一个数组 `dp` 来存储子问题的解,从最小子问题开始,逐步求解较大子问题。在以下代码中,数组 `dp` 起到了记忆化搜索中数组 `mem` 相同的记录作用。 === "Java" ```java title="climbing_stairs_dp.java" /* 爬楼梯:动态规划 */ int climbingStairsDP(int n) { if (n == 1 || n == 2) return n; // 初始化 dp 列表,用于存储子问题的解 int[] dp = new int[n + 1]; // 初始状态:预设最小子问题的解 dp[1] = 1; dp[2] = 2; // 状态转移:从较小子问题逐步求解较大子问题 for (int i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; } ``` === "C++" ```cpp title="climbing_stairs_dp.cpp" /* 爬楼梯:动态规划 */ int climbingStairsDP(int n) { if (n == 1 || n == 2) return n; // 初始化 dp 列表,用于存储子问题的解 vector dp(n + 1); // 初始状态:预设最小子问题的解 dp[1] = 1; dp[2] = 2; // 状态转移:从较小子问题逐步求解较大子问题 for (int i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n]; } ``` === "Python" ```python title="climbing_stairs_dp.py" def climbing_stairs_dp(n: int) -> int: """爬楼梯:动态规划""" if n == 1 or n == 2: return n # 初始化 dp 列表,用于存储子问题的解 dp = [0] * (n + 1) # 初始状态:预设最小子问题的解 dp[1], dp[2] = 1, 2 # 状态转移:从较小子问题逐步求解较大子问题 for i in range(3, n + 1): dp[i] = dp[i - 1] + dp[i - 2] return dp[n] ``` === "Go" ```go title="climbing_stairs_dp.go" [class]{}-[func]{climbingStairsDP} ``` === "JavaScript" ```javascript title="climbing_stairs_dp.js" [class]{}-[func]{climbingStairsDP} ``` === "TypeScript" ```typescript title="climbing_stairs_dp.ts" [class]{}-[func]{climbingStairsDP} ``` === "C" ```c title="climbing_stairs_dp.c" [class]{}-[func]{climbingStairsDP} ``` === "C#" ```csharp title="climbing_stairs_dp.cs" [class]{climbing_stairs_dp}-[func]{climbingStairsDP} ``` === "Swift" ```swift title="climbing_stairs_dp.swift" [class]{}-[func]{climbingStairsDP} ``` === "Zig" ```zig title="climbing_stairs_dp.zig" [class]{}-[func]{climbingStairsDP} ``` === "Dart" ```dart title="climbing_stairs_dp.dart" [class]{}-[func]{climbingStairsDP} ``` 与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如对于爬楼梯问题,状态定义为当前所在楼梯阶数。**动态规划的常用术语包括**: - 将 $dp$ 数组称为「状态列表」,$dp[i]$ 代表第 $i$ 个状态的解; - 将最简单子问题对应的状态(即第 $1$ , $2$ 阶楼梯)称为「初始状态」; - 将递推公式 $dp[i] = dp[i-1] + dp[i-2]$ 称为「状态转移方程」; ![爬楼梯的动态规划过程](intro_to_dynamic_programming.assets/climbing_stairs_dp.png)

Fig. 爬楼梯的动态规划过程

细心的你可能发现,**由于 $dp[i]$ 只与 $dp[i-1]$ 和 $dp[i-2]$ 有关,因此我们无需使用一个数组 `dp` 来存储所有状态**,而只需两个变量滚动前进即可。如以下代码所示,由于省去了数组 `dp` 占用的空间,因此空间复杂度从 $O(n)$ 降低至 $O(1)$ 。 === "Java" ```java title="climbing_stairs_dp.java" /* 爬楼梯:状态压缩后的动态规划 */ int climbingStairsDPComp(int n) { if (n == 1 || n == 2) return n; int a = 1, b = 2; for (int i = 3; i <= n; i++) { int tmp = b; b = a + b; a = tmp; } return b; } ``` === "C++" ```cpp title="climbing_stairs_dp.cpp" /* 爬楼梯:状态压缩后的动态规划 */ int climbingStairsDPComp(int n) { if (n == 1 || n == 2) return n; int a = 1, b = 2; for (int i = 3; i <= n; i++) { int tmp = b; b = a + b; a = tmp; } return b; } ``` === "Python" ```python title="climbing_stairs_dp.py" def climbing_stairs_dp_comp(n: int) -> int: """爬楼梯:状态压缩后的动态规划""" if n == 1 or n == 2: return n a, b = 1, 2 for _ in range(3, n + 1): a, b = b, a + b return b ``` === "Go" ```go title="climbing_stairs_dp.go" [class]{}-[func]{climbingStairsDPComp} ``` === "JavaScript" ```javascript title="climbing_stairs_dp.js" [class]{}-[func]{climbingStairsDPComp} ``` === "TypeScript" ```typescript title="climbing_stairs_dp.ts" [class]{}-[func]{climbingStairsDPComp} ``` === "C" ```c title="climbing_stairs_dp.c" [class]{}-[func]{climbingStairsDPComp} ``` === "C#" ```csharp title="climbing_stairs_dp.cs" [class]{climbing_stairs_dp}-[func]{climbingStairsDPComp} ``` === "Swift" ```swift title="climbing_stairs_dp.swift" [class]{}-[func]{climbingStairsDPComp} ``` === "Zig" ```zig title="climbing_stairs_dp.zig" [class]{}-[func]{climbingStairsDPComp} ``` === "Dart" ```dart title="climbing_stairs_dp.dart" [class]{}-[func]{climbingStairsDPComp} ``` **我们将这种空间优化技巧称为「状态压缩」**。在许多动态规划问题中,当前状态仅与前面有限个状态有关,不必保存所有的历史状态,这时我们可以应用状态压缩,只保留必要的状态,通过“降维”来节省内存空间。