/** * File: time_complexity.swift * Created Time: 2022-12-26 * Author: nuomi1 (nuomi1@qq.com) */ /* 常数阶 */ func constant(n: Int) -> Int { var count = 0 let size = 100_000 for _ in 0 ..< size { count += 1 } return count } /* 线性阶 */ func linear(n: Int) -> Int { var count = 0 for _ in 0 ..< n { count += 1 } return count } /* 线性阶(遍历数组) */ func arrayTraversal(nums: [Int]) -> Int { var count = 0 // 循环次数与数组长度成正比 for _ in nums { count += 1 } return count } /* 平方阶 */ func quadratic(n: Int) -> Int { var count = 0 // 循环次数与数组长度成平方关系 for _ in 0 ..< n { for _ in 0 ..< n { count += 1 } } return count } /* 平方阶(冒泡排序) */ func bubbleSort(nums: inout [Int]) -> Int { var count = 0 // 计数器 // 外循环:待排序元素数量为 n-1, n-2, ..., 1 for i in sequence(first: nums.count - 1, next: { $0 > 0 + 1 ? $0 - 1 : nil }) { // 内循环:冒泡操作 for j in 0 ..< i { if nums[j] > nums[j + 1] { // 交换 nums[j] 与 nums[j + 1] let tmp = nums[j] nums[j] = nums[j + 1] nums[j + 1] = tmp count += 3 // 元素交换包含 3 个单元操作 } } } return count } /* 指数阶(循环实现) */ func exponential(n: Int) -> Int { var count = 0 var base = 1 // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for _ in 0 ..< n { for _ in 0 ..< base { count += 1 } base *= 2 } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count } /* 指数阶(递归实现) */ func expRecur(n: Int) -> Int { if n == 1 { return 1 } return expRecur(n: n - 1) + expRecur(n: n - 1) + 1 } /* 对数阶(循环实现) */ func logarithmic(n: Double) -> Int { var count = 0 var n = n while n > 1 { n = n / 2 count += 1 } return count } /* 对数阶(递归实现) */ func logRecur(n: Double) -> Int { if n <= 1 { return 0 } return logRecur(n: n / 2) + 1 } /* 线性对数阶 */ func linearLogRecur(n: Double) -> Int { if n <= 1 { return 1 } var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2) for _ in sequence(first: 0, next: { $0 < n - 1 ? $0 + 1 : nil }) { count += 1 } return count } /* 阶乘阶(递归实现) */ func factorialRecur(n: Int) -> Int { if n == 0 { return 1 } var count = 0 // 从 1 个分裂出 n 个 for _ in 0 ..< n { count += factorialRecur(n: n - 1) } return count } @main enum TimeComplexity { /* Driver Code */ static func main() { // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 let n = 8 print("输入数据大小 n = \(n)") var count = constant(n: n) print("常数阶的计算操作数量 = \(count)") count = linear(n: n) print("线性阶的计算操作数量 = \(count)") count = arrayTraversal(nums: Array(repeating: 0, count: n)) print("线性阶(遍历数组)的计算操作数量 = \(count)") count = quadratic(n: n) print("平方阶的计算操作数量 = \(count)") var nums = Array(sequence(first: n, next: { $0 > 0 + 1 ? $0 - 1 : nil })) // [n,n-1,...,2,1] count = bubbleSort(nums: &nums) print("平方阶(冒泡排序)的计算操作数量 = \(count)") count = exponential(n: n) print("指数阶(循环实现)的计算操作数量 = \(count)") count = expRecur(n: n) print("指数阶(递归实现)的计算操作数量 = \(count)") count = logarithmic(n: Double(n)) print("对数阶(循环实现)的计算操作数量 = \(count)") count = logRecur(n: Double(n)) print("对数阶(递归实现)的计算操作数量 = \(count)") count = linearLogRecur(n: Double(n)) print("线性对数阶(递归实现)的计算操作数量 = \(count)") count = factorialRecur(n: n) print("阶乘阶(递归实现)的计算操作数量 = \(count)") } }