// File: time_complexity.zig // Created Time: 2022-12-28 // Author: sjinzh (sjinzh@gmail.com) const std = @import("std"); // 常数阶 fn constant(n: i32) i32 { _ = n; var count: i32 = 0; const size: i32 = 100_000; var i: i32 = 0; while(i 0) : (i -= 1) { var j: usize = 0; // 内循环:冒泡操作 while (j < i) : (j += 1) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] var tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } // 指数阶(循环实现) fn exponential(n: i32) i32{ var count: i32 = 0; var bas: i32 = 1; var i: i32 = 0; // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) while (i < n) : (i += 1) { var j: i32 = 0; while (j < bas) : (j += 1) { count += 1; } bas *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } // 指数阶(递归实现) fn expRecur(n: i32) i32{ if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } // 对数阶(循环实现) fn logarithmic(n: f32) i32 { var count: i32 = 0; var n_var = n; while (n_var > 1) { n_var = n_var / 2; count +=1; } return count; } // 对数阶(递归实现) fn logRecur(n: f32) i32 { if (n <= 1) return 0; return logRecur(n / 2) + 1; } // 线性对数阶 fn linearLogRecur(n: f32) i32 { if (n <= 1) return 1; var count: i32 = linearLogRecur(n / 2) + linearLogRecur(n / 2); var i: f32 = 0; while (i < n) : (i += 1) { count += 1; } return count; } // 阶乘阶(递归实现) fn factorialRecur(n: i32) i32 { if (n == 0) return 1; var count: i32 = 0; var i: i32 = 0; // 从 1 个分裂出 n 个 while (i < n) : (i += 1) { count += factorialRecur(n - 1); } return count; } // Driver Code pub fn main() void { // 查看本地CPU架构和操作系统信息 var native_target_info = try std.zig.system.NativeTargetInfo.detect(std.zig.CrossTarget{}); std.debug.print("Native Info: CPU Arch = {}, OS = {}\n", .{native_target_info.target.cpu.arch, native_target_info.target.os.tag}); // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 const n: i32 = 8; std.debug.print("输入数据大小 n = {}\n", .{n}); var count = constant(n); std.debug.print("常数阶的计算操作数量 = {}\n", .{count}); count = linear(n); std.debug.print("线性阶的计算操作数量 = {}\n", .{count}); var nums = [_]i32{0}**n; count = arrayTraversal(&nums); std.debug.print("线性阶(遍历数组)的计算操作数量 = {}\n", .{count}); count = quadratic(n); std.debug.print("平方阶的计算操作数量 = {}\n", .{count}); for (nums) |*num, i| { num.* = n - @intCast(i32, i); // [n,n-1,...,2,1] } count = bubbleSort(&nums); std.debug.print("平方阶(冒泡排序)的计算操作数量 = {}\n", .{count}); count = exponential(n); std.debug.print("指数阶(循环实现)的计算操作数量 = {}\n", .{count}); count = expRecur(n); std.debug.print("指数阶(递归实现)的计算操作数量 = {}\n", .{count}); count = logarithmic(@as(f32, n)); std.debug.print("对数阶(循环实现)的计算操作数量 = {}\n", .{count}); count = logRecur(@as(f32, n)); std.debug.print("对数阶(递归实现)的计算操作数量 = {}\n", .{count}); count = linearLogRecur(@as(f32, n)); std.debug.print("线性对数阶(递归实现)的计算操作数量 = {}\n", .{count}); count = factorialRecur(n); std.debug.print("阶乘阶(递归实现)的计算操作数量 = {}\n", .{count}); }