14.4 0-1 背包問題¶
背包問題是一個非常好的動態規劃入門題目,是動態規劃中最常見的問題形式。其具有很多變種,例如 0-1 背包問題、完全背包問題、多重背包問題等。
在本節中,我們先來求解最常見的 0-1 背包問題。
Question
給定 \(n\) 個物品,第 \(i\) 個物品的重量為 \(wgt[i-1]\)、價值為 \(val[i-1]\) ,和一個容量為 \(cap\) 的背包。每個物品只能選擇一次,問在限定背包容量下能放入物品的最大價值。
觀察圖 14-17 ,由於物品編號 \(i\) 從 \(1\) 開始計數,陣列索引從 \(0\) 開始計數,因此物品 \(i\) 對應重量 \(wgt[i-1]\) 和價值 \(val[i-1]\) 。
圖 14-17 0-1 背包的示例資料
我們可以將 0-1 背包問題看作一個由 \(n\) 輪決策組成的過程,對於每個物體都有不放入和放入兩種決策,因此該問題滿足決策樹模型。
該問題的目標是求解“在限定背包容量下能放入物品的最大價值”,因此較大機率是一個動態規劃問題。
第一步:思考每輪的決策,定義狀態,從而得到 \(dp\) 表
對於每個物品來說,不放入背包,背包容量不變;放入背包,背包容量減小。由此可得狀態定義:當前物品編號 \(i\) 和剩餘背包容量 \(c\) ,記為 \([i, c]\) 。
狀態 \([i, c]\) 對應的子問題為:前 \(i\) 個物品在剩餘容量為 \(c\) 的背包中的最大價值,記為 \(dp[i, c]\) 。
待求解的是 \(dp[n, cap]\) ,因此需要一個尺寸為 \((n+1) \times (cap+1)\) 的二維 \(dp\) 表。
第二步:找出最優子結構,進而推導出狀態轉移方程
當我們做出物品 \(i\) 的決策後,剩餘的是前 \(i-1\) 個物品的決策,可分為以下兩種情況。
- 不放入物品 \(i\) :背包容量不變,狀態變化為 \([i-1, c]\) 。
- 放入物品 \(i\) :背包容量減少 \(wgt[i-1]\) ,價值增加 \(val[i-1]\) ,狀態變化為 \([i-1, c-wgt[i-1]]\) 。
上述分析向我們揭示了本題的最優子結構:最大價值 \(dp[i, c]\) 等於不放入物品 \(i\) 和放入物品 \(i\) 兩種方案中價值更大的那一個。由此可推導出狀態轉移方程:
需要注意的是,若當前物品重量 \(wgt[i - 1]\) 超出剩餘背包容量 \(c\) ,則只能選擇不放入背包。
第三步:確定邊界條件和狀態轉移順序
當無物品或無剩餘背包容量時最大價值為 \(0\) ,即首列 \(dp[i, 0]\) 和首行 \(dp[0, c]\) 都等於 \(0\) 。
當前狀態 \([i, c]\) 從上方的狀態 \([i-1, c]\) 和左上方的狀態 \([i-1, c-wgt[i-1]]\) 轉移而來,因此透過兩層迴圈正序走訪整個 \(dp\) 表即可。
根據以上分析,我們接下來按順序實現暴力搜尋、記憶化搜尋、動態規劃解法。
1. 方法一:暴力搜尋¶
搜尋程式碼包含以下要素。
- 遞迴參數:狀態 \([i, c]\) 。
- 返回值:子問題的解 \(dp[i, c]\) 。
- 終止條件:當物品編號越界 \(i = 0\) 或背包剩餘容量為 \(0\) 時,終止遞迴並返回價值 \(0\) 。
- 剪枝:若當前物品重量超出背包剩餘容量,則只能選擇不放入背包。
def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:
"""0-1 背包:暴力搜尋"""
# 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 or c == 0:
return 0
# 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c:
return knapsack_dfs(wgt, val, i - 1, c)
# 計算不放入和放入物品 i 的最大價值
no = knapsack_dfs(wgt, val, i - 1, c)
yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
# 返回兩種方案中價值更大的那一個
return max(no, yes)
/* 0-1 背包:暴力搜尋 */
int knapsackDFS(vector<int> &wgt, vector<int> &val, int i, int c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = knapsackDFS(wgt, val, i - 1, c);
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回兩種方案中價值更大的那一個
return max(no, yes);
}
/* 0-1 背包:暴力搜尋 */
int knapsackDFS(int[] wgt, int[] val, int i, int c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = knapsackDFS(wgt, val, i - 1, c);
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回兩種方案中價值更大的那一個
return Math.max(no, yes);
}
/* 0-1 背包:暴力搜尋 */
int KnapsackDFS(int[] weight, int[] val, int i, int c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若超過背包容量,則只能選擇不放入背包
if (weight[i - 1] > c) {
return KnapsackDFS(weight, val, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = KnapsackDFS(weight, val, i - 1, c);
int yes = KnapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];
// 返回兩種方案中價值更大的那一個
return Math.Max(no, yes);
}
/* 0-1 背包:暴力搜尋 */
func knapsackDFS(wgt, val []int, i, c int) int {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 || c == 0 {
return 0
}
// 若超過背包容量,則只能選擇不放入背包
if wgt[i-1] > c {
return knapsackDFS(wgt, val, i-1, c)
}
// 計算不放入和放入物品 i 的最大價值
no := knapsackDFS(wgt, val, i-1, c)
yes := knapsackDFS(wgt, val, i-1, c-wgt[i-1]) + val[i-1]
// 返回兩種方案中價值更大的那一個
return int(math.Max(float64(no), float64(yes)))
}
/* 0-1 背包:暴力搜尋 */
func knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 || c == 0 {
return 0
}
// 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c {
return knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
}
// 計算不放入和放入物品 i 的最大價值
let no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
let yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
// 返回兩種方案中價值更大的那一個
return max(no, yes)
}
/* 0-1 背包:暴力搜尋 */
function knapsackDFS(wgt, val, i, c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i === 0 || c === 0) {
return 0;
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
const no = knapsackDFS(wgt, val, i - 1, c);
const yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回兩種方案中價值更大的那一個
return Math.max(no, yes);
}
/* 0-1 背包:暴力搜尋 */
function knapsackDFS(
wgt: Array<number>,
val: Array<number>,
i: number,
c: number
): number {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i === 0 || c === 0) {
return 0;
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
const no = knapsackDFS(wgt, val, i - 1, c);
const yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回兩種方案中價值更大的那一個
return Math.max(no, yes);
}
/* 0-1 背包:暴力搜尋 */
int knapsackDFS(List<int> wgt, List<int> val, int i, int c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = knapsackDFS(wgt, val, i - 1, c);
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回兩種方案中價值更大的那一個
return max(no, yes);
}
/* 0-1 背包:暴力搜尋 */
fn knapsack_dfs(wgt: &[i32], val: &[i32], i: usize, c: usize) -> i32 {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 || c == 0 {
return 0;
}
// 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c as i32 {
return knapsack_dfs(wgt, val, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
let no = knapsack_dfs(wgt, val, i - 1, c);
let yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1] as usize) + val[i - 1];
// 返回兩種方案中價值更大的那一個
std::cmp::max(no, yes)
}
/* 0-1 背包:暴力搜尋 */
int knapsackDFS(int wgt[], int val[], int i, int c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = knapsackDFS(wgt, val, i - 1, c);
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回兩種方案中價值更大的那一個
return myMax(no, yes);
}
/* 0-1 背包:暴力搜尋 */
fun knapsackDFS(
wgt: IntArray,
value: IntArray,
i: Int,
c: Int
): Int {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, value, i - 1, c)
}
// 計算不放入和放入物品 i 的最大價值
val no = knapsackDFS(wgt, value, i - 1, c)
val yes = knapsackDFS(wgt, value, i - 1, c - wgt[i - 1]) + value[i - 1]
// 返回兩種方案中價值更大的那一個
return max(no.toDouble(), yes.toDouble()).toInt()
}
// 0-1 背包:暴力搜尋
fn knapsackDFS(wgt: []i32, val: []i32, i: usize, c: usize) i32 {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 or c == 0) {
return 0;
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
var no = knapsackDFS(wgt, val, i - 1, c);
var yes = knapsackDFS(wgt, val, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];
// 返回兩種方案中價值更大的那一個
return @max(no, yes);
}
視覺化執行
如圖 14-18 所示,由於每個物品都會產生不選和選兩條搜尋分支,因此時間複雜度為 \(O(2^n)\) 。
觀察遞迴樹,容易發現其中存在重疊子問題,例如 \(dp[1, 10]\) 等。而當物品較多、背包容量較大,尤其是相同重量的物品較多時,重疊子問題的數量將會大幅增多。
圖 14-18 0-1 背包問題的暴力搜尋遞迴樹
2. 方法二:記憶化搜尋¶
為了保證重疊子問題只被計算一次,我們藉助記憶串列 mem
來記錄子問題的解,其中 mem[i][c]
對應 \(dp[i, c]\) 。
引入記憶化之後,時間複雜度取決於子問題數量,也就是 \(O(n \times cap)\) 。實現程式碼如下:
def knapsack_dfs_mem(
wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int
) -> int:
"""0-1 背包:記憶化搜尋"""
# 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 or c == 0:
return 0
# 若已有記錄,則直接返回
if mem[i][c] != -1:
return mem[i][c]
# 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c:
return knapsack_dfs_mem(wgt, val, mem, i - 1, c)
# 計算不放入和放入物品 i 的最大價值
no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
# 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = max(no, yes)
return mem[i][c]
/* 0-1 背包:記憶化搜尋 */
int knapsackDFSMem(vector<int> &wgt, vector<int> &val, vector<vector<int>> &mem, int i, int c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若已有記錄,則直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = max(no, yes);
return mem[i][c];
}
/* 0-1 背包:記憶化搜尋 */
int knapsackDFSMem(int[] wgt, int[] val, int[][] mem, int i, int c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若已有記錄,則直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = Math.max(no, yes);
return mem[i][c];
}
/* 0-1 背包:記憶化搜尋 */
int KnapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若已有記錄,則直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超過背包容量,則只能選擇不放入背包
if (weight[i - 1] > c) {
return KnapsackDFSMem(weight, val, mem, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = KnapsackDFSMem(weight, val, mem, i - 1, c);
int yes = KnapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = Math.Max(no, yes);
return mem[i][c];
}
/* 0-1 背包:記憶化搜尋 */
func knapsackDFSMem(wgt, val []int, mem [][]int, i, c int) int {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 || c == 0 {
return 0
}
// 若已有記錄,則直接返回
if mem[i][c] != -1 {
return mem[i][c]
}
// 若超過背包容量,則只能選擇不放入背包
if wgt[i-1] > c {
return knapsackDFSMem(wgt, val, mem, i-1, c)
}
// 計算不放入和放入物品 i 的最大價值
no := knapsackDFSMem(wgt, val, mem, i-1, c)
yes := knapsackDFSMem(wgt, val, mem, i-1, c-wgt[i-1]) + val[i-1]
// 返回兩種方案中價值更大的那一個
mem[i][c] = int(math.Max(float64(no), float64(yes)))
return mem[i][c]
}
/* 0-1 背包:記憶化搜尋 */
func knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 || c == 0 {
return 0
}
// 若已有記錄,則直接返回
if mem[i][c] != -1 {
return mem[i][c]
}
// 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c {
return knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
}
// 計算不放入和放入物品 i 的最大價值
let no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
let yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = max(no, yes)
return mem[i][c]
}
/* 0-1 背包:記憶化搜尋 */
function knapsackDFSMem(wgt, val, mem, i, c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i === 0 || c === 0) {
return 0;
}
// 若已有記錄,則直接返回
if (mem[i][c] !== -1) {
return mem[i][c];
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
const no = knapsackDFSMem(wgt, val, mem, i - 1, c);
const yes =
knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = Math.max(no, yes);
return mem[i][c];
}
/* 0-1 背包:記憶化搜尋 */
function knapsackDFSMem(
wgt: Array<number>,
val: Array<number>,
mem: Array<Array<number>>,
i: number,
c: number
): number {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i === 0 || c === 0) {
return 0;
}
// 若已有記錄,則直接返回
if (mem[i][c] !== -1) {
return mem[i][c];
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
const no = knapsackDFSMem(wgt, val, mem, i - 1, c);
const yes =
knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = Math.max(no, yes);
return mem[i][c];
}
/* 0-1 背包:記憶化搜尋 */
int knapsackDFSMem(
List<int> wgt,
List<int> val,
List<List<int>> mem,
int i,
int c,
) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若已有記錄,則直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = max(no, yes);
return mem[i][c];
}
/* 0-1 背包:記憶化搜尋 */
fn knapsack_dfs_mem(wgt: &[i32], val: &[i32], mem: &mut Vec<Vec<i32>>, i: usize, c: usize) -> i32 {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 || c == 0 {
return 0;
}
// 若已有記錄,則直接返回
if mem[i][c] != -1 {
return mem[i][c];
}
// 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c as i32 {
return knapsack_dfs_mem(wgt, val, mem, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
let no = knapsack_dfs_mem(wgt, val, mem, i - 1, c);
let yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1] as usize) + val[i - 1];
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = std::cmp::max(no, yes);
mem[i][c]
}
/* 0-1 背包:記憶化搜尋 */
int knapsackDFSMem(int wgt[], int val[], int memCols, int **mem, int i, int c) {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0;
}
// 若已有記錄,則直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
int no = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c);
int yes = knapsackDFSMem(wgt, val, memCols, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = myMax(no, yes);
return mem[i][c];
}
/* 0-1 背包:記憶化搜尋 */
fun knapsackDFSMem(
wgt: IntArray,
value: IntArray,
mem: Array<IntArray>,
i: Int,
c: Int
): Int {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 || c == 0) {
return 0
}
// 若已有記錄,則直接返回
if (mem[i][c] != -1) {
return mem[i][c]
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, value, mem, i - 1, c)
}
// 計算不放入和放入物品 i 的最大價值
val no = knapsackDFSMem(wgt, value, mem, i - 1, c)
val yes = knapsackDFSMem(wgt, value, mem, i - 1, c - wgt[i - 1]) + value[i - 1]
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = max(no.toDouble(), yes.toDouble()).toInt()
return mem[i][c]
}
// 0-1 背包:記憶化搜尋
fn knapsackDFSMem(wgt: []i32, val: []i32, mem: anytype, i: usize, c: usize) i32 {
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
if (i == 0 or c == 0) {
return 0;
}
// 若已有記錄,則直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超過背包容量,則只能選擇不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
// 計算不放入和放入物品 i 的最大價值
var no = knapsackDFSMem(wgt, val, mem, i - 1, c);
var yes = knapsackDFSMem(wgt, val, mem, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];
// 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = @max(no, yes);
return mem[i][c];
}
視覺化執行
圖 14-19 展示了在記憶化搜尋中被剪掉的搜尋分支。
圖 14-19 0-1 背包問題的記憶化搜尋遞迴樹
3. 方法三:動態規劃¶
動態規劃實質上就是在狀態轉移中填充 \(dp\) 表的過程,程式碼如下所示:
def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
"""0-1 背包:動態規劃"""
n = len(wgt)
# 初始化 dp 表
dp = [[0] * (cap + 1) for _ in range(n + 1)]
# 狀態轉移
for i in range(1, n + 1):
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c]
else:
# 不選和選物品 i 這兩種方案的較大值
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
return dp[n][cap]
/* 0-1 背包:動態規劃 */
int knapsackDP(vector<int> &wgt, vector<int> &val, int cap) {
int n = wgt.size();
// 初始化 dp 表
vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));
// 狀態轉移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
/* 0-1 背包:動態規劃 */
int knapsackDP(int[] wgt, int[] val, int cap) {
int n = wgt.length;
// 初始化 dp 表
int[][] dp = new int[n + 1][cap + 1];
// 狀態轉移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = Math.max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
/* 0-1 背包:動態規劃 */
int KnapsackDP(int[] weight, int[] val, int cap) {
int n = weight.Length;
// 初始化 dp 表
int[,] dp = new int[n + 1, cap + 1];
// 狀態轉移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (weight[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[i, c] = dp[i - 1, c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i, c] = Math.Max(dp[i - 1, c - weight[i - 1]] + val[i - 1], dp[i - 1, c]);
}
}
}
return dp[n, cap];
}
/* 0-1 背包:動態規劃 */
func knapsackDP(wgt, val []int, cap int) int {
n := len(wgt)
// 初始化 dp 表
dp := make([][]int, n+1)
for i := 0; i <= n; i++ {
dp[i] = make([]int, cap+1)
}
// 狀態轉移
for i := 1; i <= n; i++ {
for c := 1; c <= cap; c++ {
if wgt[i-1] > c {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i-1][c]
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i-1][c-wgt[i-1]]+val[i-1])))
}
}
}
return dp[n][cap]
}
/* 0-1 背包:動態規劃 */
func knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {
let n = wgt.count
// 初始化 dp 表
var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)
// 狀態轉移
for i in 1 ... n {
for c in 1 ... cap {
if wgt[i - 1] > c {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c]
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
}
}
}
return dp[n][cap]
}
/* 0-1 背包:動態規劃 */
function knapsackDP(wgt, val, cap) {
const n = wgt.length;
// 初始化 dp 表
const dp = Array(n + 1)
.fill(0)
.map(() => Array(cap + 1).fill(0));
// 狀態轉移
for (let i = 1; i <= n; i++) {
for (let c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = Math.max(
dp[i - 1][c],
dp[i - 1][c - wgt[i - 1]] + val[i - 1]
);
}
}
}
return dp[n][cap];
}
/* 0-1 背包:動態規劃 */
function knapsackDP(
wgt: Array<number>,
val: Array<number>,
cap: number
): number {
const n = wgt.length;
// 初始化 dp 表
const dp = Array.from({ length: n + 1 }, () =>
Array.from({ length: cap + 1 }, () => 0)
);
// 狀態轉移
for (let i = 1; i <= n; i++) {
for (let c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = Math.max(
dp[i - 1][c],
dp[i - 1][c - wgt[i - 1]] + val[i - 1]
);
}
}
}
return dp[n][cap];
}
/* 0-1 背包:動態規劃 */
int knapsackDP(List<int> wgt, List<int> val, int cap) {
int n = wgt.length;
// 初始化 dp 表
List<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));
// 狀態轉移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
/* 0-1 背包:動態規劃 */
fn knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {
let n = wgt.len();
// 初始化 dp 表
let mut dp = vec![vec![0; cap + 1]; n + 1];
// 狀態轉移
for i in 1..=n {
for c in 1..=cap {
if wgt[i - 1] > c as i32 {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = std::cmp::max(
dp[i - 1][c],
dp[i - 1][c - wgt[i - 1] as usize] + val[i - 1],
);
}
}
}
dp[n][cap]
}
/* 0-1 背包:動態規劃 */
int knapsackDP(int wgt[], int val[], int cap, int wgtSize) {
int n = wgtSize;
// 初始化 dp 表
int **dp = malloc((n + 1) * sizeof(int *));
for (int i = 0; i <= n; i++) {
dp[i] = calloc(cap + 1, sizeof(int));
}
// 狀態轉移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = myMax(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
}
}
}
int res = dp[n][cap];
// 釋放記憶體
for (int i = 0; i <= n; i++) {
free(dp[i]);
}
return res;
}
/* 0-1 背包:動態規劃 */
fun knapsackDP(
wgt: IntArray,
value: IntArray,
cap: Int
): Int {
val n = wgt.size
// 初始化 dp 表
val dp = Array(n + 1) { IntArray(cap + 1) }
// 狀態轉移
for (i in 1..n) {
for (c in 1..cap) {
if (wgt[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c]
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = max(dp[i - 1][c].toDouble(), (dp[i - 1][c - wgt[i - 1]] + value[i - 1]).toDouble())
.toInt()
}
}
}
return dp[n][cap]
}
// 0-1 背包:動態規劃
fn knapsackDP(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {
comptime var n = wgt.len;
// 初始化 dp 表
var dp = [_][cap + 1]i32{[_]i32{0} ** (cap + 1)} ** (n + 1);
// 狀態轉移
for (1..n + 1) |i| {
for (1..cap + 1) |c| {
if (wgt[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[i][c] = @max(dp[i - 1][c], dp[i - 1][c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);
}
}
}
return dp[n][cap];
}
視覺化執行
如圖 14-20 所示,時間複雜度和空間複雜度都由陣列 dp
大小決定,即 \(O(n \times cap)\) 。
圖 14-20 0-1 背包問題的動態規劃過程
4. 空間最佳化¶
由於每個狀態都只與其上一行的狀態有關,因此我們可以使用兩個陣列滾動前進,將空間複雜度從 \(O(n^2)\) 降至 \(O(n)\) 。
進一步思考,我們能否僅用一個陣列實現空間最佳化呢?觀察可知,每個狀態都是由正上方或左上方的格子轉移過來的。假設只有一個陣列,當開始走訪第 \(i\) 行時,該陣列儲存的仍然是第 \(i-1\) 行的狀態。
- 如果採取正序走訪,那麼走訪到 \(dp[i, j]\) 時,左上方 \(dp[i-1, 1]\) ~ \(dp[i-1, j-1]\) 值可能已經被覆蓋,此時就無法得到正確的狀態轉移結果。
- 如果採取倒序走訪,則不會發生覆蓋問題,狀態轉移可以正確進行。
圖 14-21 展示了在單個陣列下從第 \(i = 1\) 行轉換至第 \(i = 2\) 行的過程。請思考正序走訪和倒序走訪的區別。
圖 14-21 0-1 背包的空間最佳化後的動態規劃過程
在程式碼實現中,我們僅需將陣列 dp
的第一維 \(i\) 直接刪除,並且把內迴圈更改為倒序走訪即可:
def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
"""0-1 背包:空間最佳化後的動態規劃"""
n = len(wgt)
# 初始化 dp 表
dp = [0] * (cap + 1)
# 狀態轉移
for i in range(1, n + 1):
# 倒序走訪
for c in range(cap, 0, -1):
if wgt[i - 1] > c:
# 若超過背包容量,則不選物品 i
dp[c] = dp[c]
else:
# 不選和選物品 i 這兩種方案的較大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
return dp[cap]
/* 0-1 背包:空間最佳化後的動態規劃 */
int knapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {
int n = wgt.size();
// 初始化 dp 表
vector<int> dp(cap + 1, 0);
// 狀態轉移
for (int i = 1; i <= n; i++) {
// 倒序走訪
for (int c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* 0-1 背包:空間最佳化後的動態規劃 */
int knapsackDPComp(int[] wgt, int[] val, int cap) {
int n = wgt.length;
// 初始化 dp 表
int[] dp = new int[cap + 1];
// 狀態轉移
for (int i = 1; i <= n; i++) {
// 倒序走訪
for (int c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* 0-1 背包:空間最佳化後的動態規劃 */
int KnapsackDPComp(int[] weight, int[] val, int cap) {
int n = weight.Length;
// 初始化 dp 表
int[] dp = new int[cap + 1];
// 狀態轉移
for (int i = 1; i <= n; i++) {
// 倒序走訪
for (int c = cap; c > 0; c--) {
if (weight[i - 1] > c) {
// 若超過背包容量,則不選物品 i
dp[c] = dp[c];
} else {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = Math.Max(dp[c], dp[c - weight[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* 0-1 背包:空間最佳化後的動態規劃 */
func knapsackDPComp(wgt, val []int, cap int) int {
n := len(wgt)
// 初始化 dp 表
dp := make([]int, cap+1)
// 狀態轉移
for i := 1; i <= n; i++ {
// 倒序走訪
for c := cap; c >= 1; c-- {
if wgt[i-1] <= c {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))
}
}
}
return dp[cap]
}
/* 0-1 背包:空間最佳化後的動態規劃 */
func knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {
let n = wgt.count
// 初始化 dp 表
var dp = Array(repeating: 0, count: cap + 1)
// 狀態轉移
for i in 1 ... n {
// 倒序走訪
for c in (1 ... cap).reversed() {
if wgt[i - 1] <= c {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
}
}
}
return dp[cap]
}
/* 0-1 背包:狀態壓縮後的動態規劃 */
function knapsackDPComp(wgt, val, cap) {
const n = wgt.length;
// 初始化 dp 表
const dp = Array(cap + 1).fill(0);
// 狀態轉移
for (let i = 1; i <= n; i++) {
// 倒序走訪
for (let c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* 0-1 背包:狀態壓縮後的動態規劃 */
function knapsackDPComp(
wgt: Array<number>,
val: Array<number>,
cap: number
): number {
const n = wgt.length;
// 初始化 dp 表
const dp = Array(cap + 1).fill(0);
// 狀態轉移
for (let i = 1; i <= n; i++) {
// 倒序走訪
for (let c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* 0-1 背包:空間最佳化後的動態規劃 */
int knapsackDPComp(List<int> wgt, List<int> val, int cap) {
int n = wgt.length;
// 初始化 dp 表
List<int> dp = List.filled(cap + 1, 0);
// 狀態轉移
for (int i = 1; i <= n; i++) {
// 倒序走訪
for (int c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* 0-1 背包:空間最佳化後的動態規劃 */
fn knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {
let n = wgt.len();
// 初始化 dp 表
let mut dp = vec![0; cap + 1];
// 狀態轉移
for i in 1..=n {
// 倒序走訪
for c in (1..=cap).rev() {
if wgt[i - 1] <= c as i32 {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);
}
}
}
dp[cap]
}
/* 0-1 背包:空間最佳化後的動態規劃 */
int knapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
int n = wgtSize;
// 初始化 dp 表
int *dp = calloc(cap + 1, sizeof(int));
// 狀態轉移
for (int i = 1; i <= n; i++) {
// 倒序走訪
for (int c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = myMax(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
int res = dp[cap];
// 釋放記憶體
free(dp);
return res;
}
/* 0-1 背包:空間最佳化後的動態規劃 */
fun knapsackDPComp(
wgt: IntArray,
value: IntArray,
cap: Int
): Int {
val n = wgt.size
// 初始化 dp 表
val dp = IntArray(cap + 1)
// 狀態轉移
for (i in 1..n) {
// 倒序走訪
for (c in cap downTo 1) {
if (wgt[i - 1] <= c) {
// 不選和選物品 i 這兩種方案的較大值
dp[c] =
max(dp[c].toDouble(), (dp[c - wgt[i - 1]] + value[i - 1]).toDouble()).toInt()
}
}
}
return dp[cap]
}
// 0-1 背包:空間最佳化後的動態規劃
fn knapsackDPComp(wgt: []i32, val: []i32, comptime cap: usize) i32 {
var n = wgt.len;
// 初始化 dp 表
var dp = [_]i32{0} ** (cap + 1);
// 狀態轉移
for (1..n + 1) |i| {
// 倒序走訪
var c = cap;
while (c > 0) : (c -= 1) {
if (wgt[i - 1] < c) {
// 不選和選物品 i 這兩種方案的較大值
dp[c] = @max(dp[c], dp[c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);
}
}
}
return dp[cap];
}