跳转至

4.3.   列表

由于长度不可变,数组的实用性大大降低。在很多情况下,我们事先并不知道会输入多少数据,这就为数组长度的选择带来了很大困难。长度选小了,需要在添加数据中频繁地扩容数组;长度选大了,又造成内存空间的浪费。

为了解决此问题,诞生了一种被称为「列表 List」的数据结构。列表可以被理解为长度可变的数组,因此也常被称为「动态数组 Dynamic Array」。列表基于数组实现,继承了数组的优点,同时还可以在程序运行中实时扩容。在列表中,我们可以自由地添加元素,而不用担心超过容量限制。

4.3.1.   列表常用操作

初始化列表。我们通常会使用到“无初始值”和“有初始值”的两种初始化方法。

list.java
/* 初始化列表 */
// 无初始值
List<Integer> list1 = new ArrayList<>();
// 有初始值(注意数组的元素类型需为 int[] 的包装类 Integer[])
Integer[] numbers = new Integer[] { 1, 3, 2, 5, 4 };
List<Integer> list = new ArrayList<>(Arrays.asList(numbers));
list.cpp
/* 初始化列表 */
// 需注意,C++ 中 vector 即是本文描述的 list
// 无初始值
vector<int> list1;
// 有初始值
vector<int> list = { 1, 3, 2, 5, 4 };
list.py
""" 初始化列表 """
# 无初始值
list1: List[int] = []
# 有初始值
list: List[int] = [1, 3, 2, 5, 4]
list_test.go
/* 初始化列表 */
// 无初始值
list1 := []int
// 有初始值
list := []int{1, 3, 2, 5, 4}
list.js
/* 初始化列表 */
// 无初始值
const list1 = [];
// 有初始值
const list = [1, 3, 2, 5, 4];
list.ts
/* 初始化列表 */
// 无初始值
const list1: number[] = [];
// 有初始值
const list: number[] = [1, 3, 2, 5, 4];
list.c

list.cs
/* 初始化列表 */
// 无初始值
List<int> list1 = new ();
// 有初始值
int[] numbers = new int[] { 1, 3, 2, 5, 4 };
List<int> list = numbers.ToList();
list.swift
/* 初始化列表 */
// 无初始值
let list1: [Int] = []
// 有初始值
var list = [1, 3, 2, 5, 4]
list.zig
// 初始化列表
var list = std.ArrayList(i32).init(std.heap.page_allocator);
defer list.deinit();
try list.appendSlice(&[_]i32{ 1, 3, 2, 5, 4 });

访问与更新元素。列表的底层数据结构是数组,因此可以在 \(O(1)\) 时间内访问与更新元素,效率很高。

list.java
/* 访问元素 */
int num = list.get(1);  // 访问索引 1 处的元素

/* 更新元素 */
list.set(1, 0);  // 将索引 1 处的元素更新为 0
list.cpp
/* 访问元素 */
int num = list[1];  // 访问索引 1 处的元素

/* 更新元素 */
list[1] = 0;  // 将索引 1 处的元素更新为 0
list.py
""" 访问元素 """
num: int = list[1]  # 访问索引 1 处的元素

""" 更新元素 """
list[1] = 0    # 将索引 1 处的元素更新为 0
list_test.go
/* 访问元素 */
num := list[1]  // 访问索引 1 处的元素

/* 更新元素 */
list[1] = 0     // 将索引 1 处的元素更新为 0
list.js
/* 访问元素 */
const num = list[1];  // 访问索引 1 处的元素

/* 更新元素 */
list[1] = 0;  // 将索引 1 处的元素更新为 0
list.ts
/* 访问元素 */
const num: number = list[1];  // 访问索引 1 处的元素

/* 更新元素 */
list[1] = 0;  // 将索引 1 处的元素更新为 0
list.c

list.cs
/* 访问元素 */
int num = list[1];  // 访问索引 1 处的元素

/* 更新元素 */
list[1] = 0;  // 将索引 1 处的元素更新为 0
list.swift
/* 访问元素 */
let num = list[1] // 访问索引 1 处的元素

/* 更新元素 */
list[1] = 0 // 将索引 1 处的元素更新为 0
list.zig
// 访问元素
var num = list.items[1]; // 访问索引 1 处的元素

// 更新元素
list.items[1] = 0; // 将索引 1 处的元素更新为 0  

在列表中添加、插入、删除元素。相对于数组,列表可以自由地添加与删除元素。在列表尾部添加元素的时间复杂度为 \(O(1)\) ,但是插入与删除元素的效率仍与数组一样低,时间复杂度为 \(O(N)\)

list.java
/* 清空列表 */
list.clear();

/* 尾部添加元素 */
list.add(1);
list.add(3);
list.add(2);
list.add(5);
list.add(4);

/* 中间插入元素 */
list.add(3, 6);  // 在索引 3 处插入数字 6

/* 删除元素 */
list.remove(3);  // 删除索引 3 处的元素
list.cpp
/* 清空列表 */
list.clear();

/* 尾部添加元素 */
list.push_back(1);
list.push_back(3);
list.push_back(2);
list.push_back(5);
list.push_back(4);

/* 中间插入元素 */
list.insert(list.begin() + 3, 6);  // 在索引 3 处插入数字 6

/* 删除元素 */
list.erase(list.begin() + 3);      // 删除索引 3 处的元素
list.py
""" 清空列表 """
list.clear()

""" 尾部添加元素 """
list.append(1)
list.append(3)
list.append(2)
list.append(5)
list.append(4)

""" 中间插入元素 """
list.insert(3, 6)  # 在索引 3 处插入数字 6

""" 删除元素 """
list.pop(3)        # 删除索引 3 处的元素
list_test.go
/* 清空列表 */
list = nil

/* 尾部添加元素 */
list = append(list, 1)
list = append(list, 3)
list = append(list, 2)
list = append(list, 5)
list = append(list, 4)

/* 中间插入元素 */
list = append(list[:3], append([]int{6}, list[3:]...)...) // 在索引 3 处插入数字 6

/* 删除元素 */
list = append(list[:3], list[4:]...) // 删除索引 3 处的元素
list.js
/* 清空列表 */
list.length = 0;

/* 尾部添加元素 */
list.push(1);
list.push(3);
list.push(2);
list.push(5);
list.push(4);

/* 中间插入元素 */
list.splice(3, 0, 6);

/* 删除元素 */
list.splice(3, 1);
list.ts
/* 清空列表 */
list.length = 0;

/* 尾部添加元素 */
list.push(1);
list.push(3);
list.push(2);
list.push(5);
list.push(4);

/* 中间插入元素 */
list.splice(3, 0, 6);

/* 删除元素 */
list.splice(3, 1);
list.c

list.cs
/* 清空列表 */
list.Clear();

/* 尾部添加元素 */
list.Add(1);
list.Add(3);
list.Add(2);
list.Add(5);
list.Add(4);

/* 中间插入元素 */
list.Insert(3, 6);

/* 删除元素 */
list.RemoveAt(3);
list.swift
/* 清空列表 */
list.removeAll()

/* 尾部添加元素 */
list.append(1)
list.append(3)
list.append(2)
list.append(5)
list.append(4)

/* 中间插入元素 */
list.insert(6, at: 3) // 在索引 3 处插入数字 6

/* 删除元素 */
list.remove(at: 3) // 删除索引 3 处的元素
list.zig
// 清空列表
list.clearRetainingCapacity();

// 尾部添加元素
try list.append(1);
try list.append(3);
try list.append(2);
try list.append(5);
try list.append(4);

// 中间插入元素
try list.insert(3, 6); // 在索引 3 处插入数字 6

// 删除元素
_ = list.orderedRemove(3); // 删除索引 3 处的元素

遍历列表。与数组一样,列表可以使用索引遍历,也可以使用 for-each 直接遍历。

list.java
/* 通过索引遍历列表 */
int count = 0;
for (int i = 0; i < list.size(); i++) {
    count++;
}

/* 直接遍历列表元素 */
count = 0;
for (int n : list) {
    count++;
}
list.cpp
/* 通过索引遍历列表 */
int count = 0;
for (int i = 0; i < list.size(); i++) {
    count++;
}

/* 直接遍历列表元素 */
count = 0;
for (int n : list) {
    count++;
}
list.py
""" 通过索引遍历列表 """
count: int = 0
for i in range(len(list)):
    count += 1

""" 直接遍历列表元素 """
count: int = 0
for n in list:
    count += 1
list_test.go
/* 通过索引遍历列表 */
count := 0
for i := 0; i < len(list); i++ {
    count++
}

/* 直接遍历列表元素 */
count = 0
for range list {
    count++
}
list.js
/* 通过索引遍历列表 */
let count = 0;
for (let i = 0; i < list.length; i++) {
    count++;
}

/* 直接遍历列表元素 */
count = 0;
for (const n of list) {
    count++;
}
list.ts
/* 通过索引遍历列表 */
let count = 0;
for (let i = 0; i < list.length; i++) {
    count++;
}

/* 直接遍历列表元素 */
count = 0;
for (const n of list) {
    count++;
}
list.c

list.cs
/* 通过索引遍历列表 */
int count = 0;
for (int i = 0; i < list.Count(); i++)
{
    count++;
}

/* 直接遍历列表元素 */
count = 0;
foreach (int n in list)
{
    count++;
}
list.swift
/* 通过索引遍历列表 */
var count = 0
for _ in list.indices {
    count += 1
}

/* 直接遍历列表元素 */
count = 0
for _ in list {
    count += 1
}
list.zig
// 通过索引遍历列表
var count: i32 = 0;
var i: i32 = 0;
while (i < list.items.len) : (i += 1) {
    count += 1;
}

// 直接遍历列表元素
count = 0;
for (list.items) |_| {
    count += 1;
}

拼接两个列表。再创建一个新列表 list1 ,我们可以将其中一个列表拼接到另一个的尾部。

list.java
/* 拼接两个列表 */
List<Integer> list1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));
list.addAll(list1);  // 将列表 list1 拼接到 list 之后
list.cpp
/* 拼接两个列表 */
vector<int> list1 = { 6, 8, 7, 10, 9 };
// 将列表 list1 拼接到 list 之后
list.insert(list.end(), list1.begin(), list1.end());
list.py
""" 拼接两个列表 """
list1: List[int] = [6, 8, 7, 10, 9]
list += list1  # 将列表 list1 拼接到 list 之后
list_test.go
/* 拼接两个列表 */
list1 := []int{6, 8, 7, 10, 9}
list = append(list, list1...)  // 将列表 list1 拼接到 list 之后
list.js
/* 拼接两个列表 */
const list1 = [6, 8, 7, 10, 9];
list.push(...list1);  // 将列表 list1 拼接到 list 之后
list.ts
/* 拼接两个列表 */
const list1: number[] = [6, 8, 7, 10, 9];
list.push(...list1);  // 将列表 list1 拼接到 list 之后
list.c

list.cs
/* 拼接两个列表 */
List<int> list1 = new() { 6, 8, 7, 10, 9 };
list.AddRange(list1);  // 将列表 list1 拼接到 list 之后
list.swift
/* 拼接两个列表 */
let list1 = [6, 8, 7, 10, 9]
list.append(contentsOf: list1) // 将列表 list1 拼接到 list 之后
list.zig
// 拼接两个列表
var list1 = std.ArrayList(i32).init(std.heap.page_allocator);
defer list1.deinit();
try list1.appendSlice(&[_]i32{ 6, 8, 7, 10, 9 });
try list.insertSlice(list.items.len, list1.items); // 将列表 list1 拼接到 list 之后

排序列表。排序也是常用的方法之一,完成列表排序后,我们就可以使用在数组类算法题中经常考察的「二分查找」和「双指针」算法了。

list.java
/* 排序列表 */
Collections.sort(list);  // 排序后,列表元素从小到大排列
list.cpp
/* 排序列表 */
sort(list.begin(), list.end());  // 排序后,列表元素从小到大排列
list.py
""" 排序列表 """
list.sort()  # 排序后,列表元素从小到大排列
list_test.go
/* 排序列表 */
sort.Ints(list)  // 排序后,列表元素从小到大排列
list.js
/* 排序列表 */  
list.sort((a, b) => a - b);  // 排序后,列表元素从小到大排列
list.ts
/* 排序列表 */
list.sort((a, b) => a - b);  // 排序后,列表元素从小到大排列
list.c

list.cs
/* 排序列表 */
list.Sort(); // 排序后,列表元素从小到大排列
list.swift
/* 排序列表 */
list.sort() // 排序后,列表元素从小到大排列
list.zig
// 排序列表
std.sort.sort(i32, list.items, {}, comptime std.sort.asc(i32));

4.3.2.   列表简易实现 *

为了帮助加深对列表的理解,我们在此提供一个列表的简易版本的实现。需要关注三个核心点:

  • 初始容量:选取一个合理的数组的初始容量 initialCapacity 。在本示例中,我们选择 10 作为初始容量。
  • 数量记录:需要声明一个变量 size ,用来记录列表当前有多少个元素,并随着元素插入与删除实时更新。根据此变量,可以定位列表的尾部,以及判断是否需要扩容。
  • 扩容机制:插入元素有可能导致超出列表容量,此时需要扩容列表,方法是建立一个更大的数组来替换当前数组。需要给定一个扩容倍数 extendRatio ,在本示例中,我们规定每次将数组扩容至之前的 2 倍。

本示例是为了帮助读者对如何实现列表产生直观的认识。实际编程语言中,列表的实现远比以下代码复杂且标准,感兴趣的读者可以查阅源码学习。

my_list.java
/* 列表类简易实现 */
class MyList {
    private int[] nums;           // 数组(存储列表元素)
    private int capacity = 10;    // 列表容量
    private int size = 0;         // 列表长度(即当前元素数量)
    private int extendRatio = 2;  // 每次列表扩容的倍数

    /* 构造方法 */
    public MyList() {
        nums = new int[capacity];
    }

    /* 获取列表长度(即当前元素数量)*/
    public int size() {
        return size;
    }

    /* 获取列表容量 */
    public int capacity() {
        return capacity;
    }

    /* 访问元素 */
    public int get(int index) {
        // 索引如果越界则抛出异常,下同
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("索引越界");
        return nums[index];
    }

    /* 更新元素 */
    public void set(int index, int num) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("索引越界");
        nums[index] = num;
    }

    /* 尾部添加元素 */
    public void add(int num) {
        // 元素数量超出容量时,触发扩容机制
        if (size == capacity())
            extendCapacity();
        nums[size] = num;
        // 更新元素数量
        size++;
    }

    /* 中间插入元素 */
    public void insert(int index, int num) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("索引越界");
        // 元素数量超出容量时,触发扩容机制
        if (size == capacity())
            extendCapacity();
        // 将索引 index 以及之后的元素都向后移动一位
        for (int j = size - 1; j >= index; j--) {
            nums[j + 1] = nums[j];
        }
        nums[index] = num;
        // 更新元素数量
        size++;
    }

    /* 删除元素 */
    public int remove(int index) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("索引越界");
        int num = nums[index];
        // 将索引 index 之后的元素都向前移动一位
        for (int j = index; j < size - 1; j++) {
            nums[j] = nums[j + 1];
        }
        // 更新元素数量
        size--;
        // 返回被删除元素
        return num;
    }

    /* 列表扩容 */
    public void extendCapacity() {
        // 新建一个长度为 size 的数组,并将原数组拷贝到新数组
        nums = Arrays.copyOf(nums, capacity() * extendRatio);
        // 更新列表容量
        capacity = nums.length;
    }

    /* 将列表转换为数组 */
    public int[] toArray() {
        int size = size();
        // 仅转换有效长度范围内的列表元素
        int[] nums = new int[size];
        for (int i = 0; i < size; i++) {
            nums[i] = get(i);
        }
        return nums;
    }
}
my_list.cpp
/* 列表类简易实现 */
class MyList {
private:
    int* nums;                // 数组(存储列表元素)
    int numsCapacity = 10;    // 列表容量
    int numsSize = 0;         // 列表长度(即当前元素数量)
    int extendRatio = 2;      // 每次列表扩容的倍数

public:
    /* 构造方法 */
    MyList() {
        nums = new int[numsCapacity];
    }

    /* 析构方法 */
    ~MyList() {
        delete[] nums;
    }

    /* 获取列表长度(即当前元素数量)*/
    int size() {
        return numsSize;
    }

    /* 获取列表容量 */
    int capacity() {
        return numsCapacity;
    }

    /* 访问元素 */
    int get(int index) {
        // 索引如果越界则抛出异常,下同
        if (index < 0 || index >= size())
            throw out_of_range("索引越界");
        return nums[index];
    }

    /* 更新元素 */
    void set(int index, int num) {
        if (index < 0 || index >= size())
            throw out_of_range("索引越界");
        nums[index] = num;
    }

    /* 尾部添加元素 */
    void add(int num) {
        // 元素数量超出容量时,触发扩容机制
        if (size() == capacity())
            extendCapacity();
        nums[size()] = num;
        // 更新元素数量
        numsSize++;
    }

    /* 中间插入元素 */
    void insert(int index, int num) {
        if (index < 0 || index >= size())
            throw out_of_range("索引越界");
        // 元素数量超出容量时,触发扩容机制
        if (size() == capacity())
            extendCapacity();
        // 索引 i 以及之后的元素都向后移动一位
        for (int j = size() - 1; j >= index; j--) {
            nums[j + 1] = nums[j];
        }
        nums[index] = num;
        // 更新元素数量
        numsSize++;
    }

    /* 删除元素 */
    int remove(int index) {
        if (index < 0 || index >= size())
            throw out_of_range("索引越界");
        int num = nums[index];
        // 索引 i 之后的元素都向前移动一位
        for (int j = index; j < size() - 1; j++) {
            nums[j] = nums[j + 1];
        }
        // 更新元素数量
        numsSize--;
        // 返回被删除元素
        return num;
    }

    /* 列表扩容 */
    void extendCapacity() {
        // 新建一个长度为 size * extendRatio 的数组,并将原数组拷贝到新数组
        int newCapacity = capacity() * extendRatio;
        int* tmp = nums;
        nums = new int[newCapacity];
        // 将原数组中的所有元素复制到新数组
        for (int i = 0; i < size(); i++) {
            nums[i] = tmp[i];
        }
        // 释放内存
        delete[] tmp;
        numsCapacity = newCapacity;
    }

    /* 将列表转换为 Vector 用于打印 */
    vector<int> toVector() {
        // 仅转换有效长度范围内的列表元素
        vector<int> vec(size());
        for (int i = 0; i < size(); i++) {
            vec[i] = nums[i];
        }
        return vec;
    }
};
my_list.py
class MyList:
    """ 列表类简易实现 """
    def __init__(self):
        """ 构造方法 """
        self.__capacity: int = 10                       # 列表容量
        self.__nums: List[int] = [0] * self.__capacity  # 数组(存储列表元素)
        self.__size: int = 0                            # 列表长度(即当前元素数量)
        self.__extend_ratio: int = 2                    # 每次列表扩容的倍数

    def size(self) -> int:
        """ 获取列表长度(即当前元素数量) """
        return self.__size

    def capacity(self) -> int:
        """ 获取列表容量 """
        return self.__capacity

    def get(self, index: int) -> int:
        """ 访问元素 """
        # 索引如果越界则抛出异常,下同
        assert index >= 0 and index < self.__size, "索引越界"
        return self.__nums[index]

    def set(self, num: int, index: int) -> None:
        """ 更新元素 """
        assert index >= 0 and index < self.__size, "索引越界"
        self.__nums[index] = num

    def add(self, num: int) -> None:
        """ 尾部添加元素 """
        # 元素数量超出容量时,触发扩容机制
        if self.size() == self.capacity():
            self.extend_capacity()
        self.__nums[self.__size] = num
        self.__size += 1

    def insert(self, num: int, index: int) -> None:
        """ 中间插入元素 """
        assert index >= 0 and index < self.__size, "索引越界"
        # 元素数量超出容量时,触发扩容机制
        if self.__size == self.capacity():
            self.extend_capacity()
        # 索引 i 以及之后的元素都向后移动一位
        for j in range(self.__size - 1, index - 1, -1):
            self.__nums[j + 1] = self.__nums[j]
        self.__nums[index] = num
        # 更新元素数量
        self.__size += 1

    def remove(self, index: int) -> int:
        """ 删除元素 """
        assert index >= 0 and index < self.__size, "索引越界"
        num = self.__nums[index]
        # 索引 i 之后的元素都向前移动一位
        for j in range(index, self.__size - 1):
            self.__nums[j] = self.__nums[j + 1]
        # 更新元素数量
        self.__size -= 1
        # 返回被删除元素
        return num

    def extend_capacity(self) -> None:
        """ 列表扩容 """
        # 新建一个长度为 self.__size 的数组,并将原数组拷贝到新数组
        self.__nums = self.__nums + [0] * self.capacity() * (self.__extend_ratio - 1)
        # 更新列表容量
        self.__capacity = len(self.__nums)

    def to_array(self) -> List[int]:
        """ 返回有效长度的列表 """
        return self.__nums[:self.__size]
my_list.go
/* 列表类简易实现 */
type myList struct {
    numsCapacity int
    nums         []int
    numsSize     int
    extendRatio  int
}

/* 构造方法 */
func newMyList() *myList {
    return &myList{
        numsCapacity: 10,              // 列表容量
        nums:         make([]int, 10), // 数组(存储列表元素)
        numsSize:     0,               // 列表长度(即当前元素数量)
        extendRatio:  2,               // 每次列表扩容的倍数
    }
}

/* 获取列表长度(即当前元素数量) */
func (l *myList) size() int {
    return l.numsSize
}

/*  获取列表容量 */
func (l *myList) capacity() int {
    return l.numsCapacity
}

/* 访问元素 */
func (l *myList) get(index int) int {
    // 索引如果越界则抛出异常,下同
    if index < 0 || index >= l.numsSize {
        panic("索引越界")
    }
    return l.nums[index]
}

/* 更新元素 */
func (l *myList) set(num, index int) {
    if index < 0 || index >= l.numsSize {
        panic("索引越界")
    }
    l.nums[index] = num
}

/* 尾部添加元素 */
func (l *myList) add(num int) {
    // 元素数量超出容量时,触发扩容机制
    if l.numsSize == l.numsCapacity {
        l.extendCapacity()
    }
    l.nums[l.numsSize] = num
    // 更新元素数量
    l.numsSize++
}

/* 中间插入元素 */
func (l *myList) insert(num, index int) {
    if index < 0 || index >= l.numsSize {
        panic("索引越界")
    }
    // 元素数量超出容量时,触发扩容机制
    if l.numsSize == l.numsCapacity {
        l.extendCapacity()
    }
    // 索引 i 以及之后的元素都向后移动一位
    for j := l.numsSize - 1; j >= index; j-- {
        l.nums[j+1] = l.nums[j]
    }
    l.nums[index] = num
    // 更新元素数量
    l.numsSize++
}

/* 删除元素 */
func (l *myList) remove(index int) int {
    if index < 0 || index >= l.numsSize {
        panic("索引越界")
    }
    num := l.nums[index]
    // 索引 i 之后的元素都向前移动一位
    for j := index; j < l.numsSize-1; j++ {
        l.nums[j] = l.nums[j+1]
    }
    // 更新元素数量
    l.numsSize--
    // 返回被删除元素
    return num
}

/* 列表扩容 */
func (l *myList) extendCapacity() {
    // 新建一个长度为 self.__size 的数组,并将原数组拷贝到新数组
    l.nums = append(l.nums, make([]int, l.numsCapacity*(l.extendRatio-1))...)
    // 更新列表容量
    l.numsCapacity = len(l.nums)
}

/* 返回有效长度的列表 */
func (l *myList) toArray() []int {
    // 仅转换有效长度范围内的列表元素
    return l.nums[:l.numsSize]
}
my_list.js
/* 列表类简易实现 */
class MyList {
    #nums = new Array(); // 数组(存储列表元素)
    #capacity = 10; // 列表容量
    #size = 0; // 列表长度(即当前元素数量)
    #extendRatio = 2; // 每次列表扩容的倍数

    /* 构造方法 */
    constructor() {
        this.#nums = new Array(this.#capacity);
    }

    /* 获取列表长度(即当前元素数量)*/
    size() {
        return this.#size;
    }

    /* 获取列表容量 */
    capacity() {
        return this.#capacity;
    }

    /* 访问元素 */
    get(index) {
        // 索引如果越界则抛出异常,下同
        if (index < 0 || index >= this.#size)
            throw new Error('索引越界');
        return this.#nums[index];
    }

    /* 更新元素 */
    set(index, num) {
        if (index < 0 || index >= this.#size)
            throw new Error('索引越界');
        this.#nums[index] = num;
    }

    /* 尾部添加元素 */
    add(num) {
        // 如果长度等于容量,则需要扩容
        if (this.#size === this.#capacity) {
            this.extendCapacity();
        }
        // 将新元素添加到列表尾部
        this.#nums[this.#size] = num;
        this.#size++;
    }

    /* 中间插入元素 */
    insert(index, num) {
        if (index < 0 || index >= this.#size)
            throw new Error('索引越界');
        // 元素数量超出容量时,触发扩容机制
        if (this.#size === this.#capacity) {
            this.extendCapacity();
        }
        // 将索引 index 以及之后的元素都向后移动一位
        for (let j = this.#size - 1; j >= index; j--) {
            this.#nums[j + 1] = this.#nums[j];
        }
        // 更新元素数量
        this.#nums[index] = num;
        this.#size++;
    }

    /* 删除元素 */
    remove(index) {
        if (index < 0 || index >= this.#size)
            throw new Error('索引越界');
        let num = this.#nums[index];
        // 将索引 index 之后的元素都向前移动一位
        for (let j = index; j < this.#size - 1; j++) {
            this.#nums[j] = this.#nums[j + 1];
        }
        // 更新元素数量
        this.#size--;
        // 返回被删除元素
        return num;
    }

    /* 列表扩容 */
    extendCapacity() {
        // 新建一个长度为 size 的数组,并将原数组拷贝到新数组
        this.#nums = this.#nums.concat(
            new Array(this.capacity() * (this.#extendRatio - 1))
        );
        // 更新列表容量
        this.#capacity = this.#nums.length;
    }

    /* 将列表转换为数组 */
    toArray() {
        let size = this.size();
        // 仅转换有效长度范围内的列表元素
        const nums = new Array(size);
        for (let i = 0; i < size; i++) {
            nums[i] = this.get(i);
        }
        return nums;
    }
}
my_list.ts
/* 列表类简易实现 */
class MyList {
    private nums: Array<number>; // 数组(存储列表元素)
    private _capacity: number = 10; // 列表容量
    private _size: number = 0; // 列表长度(即当前元素数量)
    private extendRatio: number = 2; // 每次列表扩容的倍数

    /* 构造方法 */
    constructor() {
        this.nums = new Array(this._capacity);
    }

    /* 获取列表长度(即当前元素数量)*/
    public size(): number {
        return this._size;
    }

    /* 获取列表容量 */
    public capacity(): number {
        return this._capacity;
    }

    /* 访问元素 */
    public get(index: number): number {
        // 索引如果越界则抛出异常,下同
        if (index < 0 || index >= this._size)
            throw new Error('索引越界');
        return this.nums[index];
    }

    /* 更新元素 */
    public set(index: number, num: number): void {
        if (index < 0 || index >= this._size)
            throw new Error('索引越界');
        this.nums[index] = num;
    }

    /* 尾部添加元素 */
    public add(num: number): void {
        // 如果长度等于容量,则需要扩容
        if (this._size === this._capacity)
            this.extendCapacity();
        // 将新元素添加到列表尾部
        this.nums[this._size] = num;
        this._size++;
    }

    /* 中间插入元素 */
    public insert(index: number, num: number): void {
        if (index < 0 || index >= this._size)
            throw new Error('索引越界');
        // 元素数量超出容量时,触发扩容机制
        if (this._size === this._capacity) {
            this.extendCapacity();
        }
        // 将索引 index 以及之后的元素都向后移动一位
        for (let j = this._size - 1; j >= index; j--) {
            this.nums[j + 1] = this.nums[j];
        }
        // 更新元素数量
        this.nums[index] = num;
        this._size++;
    }

    /* 删除元素 */
    public remove(index: number): number {
        if (index < 0 || index >= this._size)
            throw new Error('索引越界');
        let num = this.nums[index];
        // 将索引 index 之后的元素都向前移动一位
        for (let j = index; j < this._size - 1; j++) {
            this.nums[j] = this.nums[j + 1];
        }
        // 更新元素数量
        this._size--;
        // 返回被删除元素
        return num;
    }

    /* 列表扩容 */
    public extendCapacity(): void {
        // 新建一个长度为 size 的数组,并将原数组拷贝到新数组
        this.nums = this.nums.concat(
            new Array(this.capacity() * (this.extendRatio - 1))
        );
        // 更新列表容量
        this._capacity = this.nums.length;
    }

    /* 将列表转换为数组 */
    public toArray(): number[] {
        let size = this.size();
        // 仅转换有效长度范围内的列表元素
        const nums = new Array(size);
        for (let i = 0; i < size; i++) {
            nums[i] = this.get(i);
        }
        return nums;
    }
}
my_list.c
[class]{myList}-[func]{}
my_list.cs
/* 列表类简易实现 */
class MyList
{
    private int[] nums;           // 数组(存储列表元素)
    private int numsCapacity = 10;    // 列表容量
    private int numsSize = 0;         // 列表长度(即当前元素数量)
    private int extendRatio = 2;  // 每次列表扩容的倍数

    /* 构造方法 */
    public MyList()
    {
        nums = new int[numsCapacity];
    }

    /* 获取列表长度(即当前元素数量)*/
    public int size()
    {
        return numsSize;
    }

    /* 获取列表容量 */
    public int capacity()
    {
        return numsCapacity;
    }

    /* 访问元素 */
    public int get(int index)
    {
        // 索引如果越界则抛出异常,下同
        if (index < 0 || index >= numsSize)
            throw new IndexOutOfRangeException("索引越界");
        return nums[index];
    }

    /* 更新元素 */
    public void set(int index, int num)
    {
        if (index < 0 || index >= numsSize)
            throw new IndexOutOfRangeException("索引越界");
        nums[index] = num;
    }

    /* 尾部添加元素 */
    public void add(int num)
    {
        // 元素数量超出容量时,触发扩容机制
        if (numsSize == numsCapacity)
            extendCapacity();
        nums[numsSize] = num;
        // 更新元素数量
        numsSize++;
    }

    /* 中间插入元素 */
    public void insert(int index, int num)
    {
        if (index < 0 || index >= numsSize)
            throw new IndexOutOfRangeException("索引越界");
        // 元素数量超出容量时,触发扩容机制
        if (numsSize == numsCapacity)
            extendCapacity();
        // 将索引 index 以及之后的元素都向后移动一位
        for (int j = numsSize - 1; j >= index; j--)
        {
            nums[j + 1] = nums[j];
        }
        nums[index] = num;
        // 更新元素数量
        numsSize++;
    }

    /* 删除元素 */
    public int remove(int index)
    {
        if (index < 0 || index >= numsSize)
            throw new IndexOutOfRangeException("索引越界");
        int num = nums[index];
        // 将索引 index 之后的元素都向前移动一位
        for (int j = index; j < numsSize - 1; j++)
        {
            nums[j] = nums[j + 1];
        }
        // 更新元素数量
        numsSize--;
        // 返回被删除元素
        return num;
    }

    /* 列表扩容 */
    public void extendCapacity()
    {
        // 新建一个长度为 numsCapacity * extendRatio 的数组,并将原数组拷贝到新数组
        System.Array.Resize(ref nums, numsCapacity * extendRatio);
        // 更新列表容量
        numsCapacity = nums.Length;
    }

    /* 将列表转换为数组 */
    public int[] toArray()
    {
        // 仅转换有效长度范围内的列表元素
        int[] nums = new int[numsSize];
        for (int i = 0; i < numsSize; i++)
        {
            nums[i] = get(i);
        }
        return nums;
    }
}
my_list.swift
/* 列表类简易实现 */
class MyList {
    private var nums: [Int] // 数组(存储列表元素)
    private var _capacity = 10 // 列表容量
    private var _size = 0 // 列表长度(即当前元素数量)
    private let extendRatio = 2 // 每次列表扩容的倍数

    /* 构造方法 */
    init() {
        nums = Array(repeating: 0, count: _capacity)
    }

    /* 获取列表长度(即当前元素数量)*/
    func size() -> Int {
        _size
    }

    /* 获取列表容量 */
    func capacity() -> Int {
        _capacity
    }

    /* 访问元素 */
    func get(index: Int) -> Int {
        // 索引如果越界则抛出错误,下同
        if index < 0 || index >= _size {
            fatalError("索引越界")
        }
        return nums[index]
    }

    /* 更新元素 */
    func set(index: Int, num: Int) {
        if index < 0 || index >= _size {
            fatalError("索引越界")
        }
        nums[index] = num
    }

    /* 尾部添加元素 */
    func add(num: Int) {
        // 元素数量超出容量时,触发扩容机制
        if _size == _capacity {
            extendCapacity()
        }
        nums[_size] = num
        // 更新元素数量
        _size += 1
    }

    /* 中间插入元素 */
    func insert(index: Int, num: Int) {
        if index < 0 || index >= _size {
            fatalError("索引越界")
        }
        // 元素数量超出容量时,触发扩容机制
        if _size == _capacity {
            extendCapacity()
        }
        // 将索引 index 以及之后的元素都向后移动一位
        for j in sequence(first: _size - 1, next: { $0 >= index + 1 ? $0 - 1 : nil }) {
            nums[j + 1] = nums[j]
        }
        nums[index] = num
        // 更新元素数量
        _size += 1
    }

    /* 删除元素 */
    @discardableResult
    func remove(index: Int) -> Int {
        if index < 0 || index >= _size {
            fatalError("索引越界")
        }
        let num = nums[index]
        // 将索引 index 之后的元素都向前移动一位
        for j in index ..< (_size - 1) {
            nums[j] = nums[j + 1]
        }
        // 更新元素数量
        _size -= 1
        // 返回被删除元素
        return num
    }

    /* 列表扩容 */
    func extendCapacity() {
        // 新建一个长度为 size 的数组,并将原数组拷贝到新数组
        nums = nums + Array(repeating: 0, count: _capacity * (extendRatio - 1))
        // 更新列表容量
        _capacity = nums.count
    }

    /* 将列表转换为数组 */
    func toArray() -> [Int] {
        var nums = Array(repeating: 0, count: _size)
        for i in 0 ..< _size {
            nums[i] = get(index: i)
        }
        return nums
    }
}
my_list.zig
// 列表类简易实现
fn MyList(comptime T: type) type {
    return struct {
        const Self = @This();

        nums: []T = undefined,                        // 数组(存储列表元素)
        nums_capacity: usize = 10,                     // 列表容量
        num_size: usize = 0,                           // 列表长度(即当前元素数量)
        extend_ratio: usize = 2,                       // 每次列表扩容的倍数
        mem_arena: ?std.heap.ArenaAllocator = null,
        mem_allocator: std.mem.Allocator = undefined, // 内存分配器

        // 构造方法(分配内存+初始化列表)
        pub fn init(self: *Self, allocator: std.mem.Allocator) !void {
            if (self.mem_arena == null) {
                self.mem_arena = std.heap.ArenaAllocator.init(allocator);
                self.mem_allocator = self.mem_arena.?.allocator();
            }
            self.nums = try self.mem_allocator.alloc(T, self.nums_capacity);
            std.mem.set(T, self.nums, @as(T, 0));
        }

        // 析构方法(释放内存)
        pub fn deinit(self: *Self) void {
            if (self.mem_arena == null) return;
            self.mem_arena.?.deinit();
        }

        // 获取列表长度(即当前元素数量)
        pub fn size(self: *Self) usize {
            return self.num_size;
        }

        // 获取列表容量
        pub fn capacity(self: *Self) usize {
            return self.nums_capacity;
        }

        // 访问元素
        pub fn get(self: *Self, index: usize) T {
            // 索引如果越界则抛出异常,下同
            if (index < 0 or index >= self.size()) @panic("索引越界");
            return self.nums[index];
        }  

        // 更新元素
        pub fn set(self: *Self, index: usize, num: T) void {
            // 索引如果越界则抛出异常,下同
            if (index < 0 or index >= self.size()) @panic("索引越界");
            self.nums[index] = num;
        }  

        // 尾部添加元素
        pub fn add(self: *Self, num: T) !void {
            // 元素数量超出容量时,触发扩容机制
            if (self.size() == self.capacity()) try self.extendCapacity();
            self.nums[self.size()] = num;
            // 更新元素数量
            self.num_size += 1;
        }  

        // 中间插入元素
        pub fn insert(self: *Self, index: usize, num: T) !void {
            if (index < 0 or index >= self.size()) @panic("索引越界");
            // 元素数量超出容量时,触发扩容机制
            if (self.size() == self.capacity()) try self.extendCapacity();
            // 索引 i 以及之后的元素都向后移动一位
            var j = self.size() - 1;
            while (j >= index) : (j -= 1) {
                self.nums[j + 1] = self.nums[j];
            }
            self.nums[index] = num;
            // 更新元素数量
            self.num_size += 1;
        }

        // 删除元素
        pub fn remove(self: *Self, index: usize) T {
            if (index < 0 or index >= self.size()) @panic("索引越界");
            var num = self.nums[index];
            // 索引 i 之后的元素都向前移动一位
            var j = index;
            while (j < self.size() - 1) : (j += 1) {
                self.nums[j] = self.nums[j + 1];
            }
            // 更新元素数量
            self.num_size -= 1;
            // 返回被删除元素
            return num;
        }

        // 列表扩容
        pub fn extendCapacity(self: *Self) !void {
            // 新建一个长度为 size * extend_ratio 的数组,并将原数组拷贝到新数组
            var newCapacity = self.capacity() * self.extend_ratio;
            var extend = try self.mem_allocator.alloc(T, newCapacity);
            std.mem.set(T, extend, @as(T, 0));
            // 将原数组中的所有元素复制到新数组
            std.mem.copy(T, extend, self.nums);
            self.nums = extend;
            // 更新列表容量
            self.nums_capacity = newCapacity;
        }

        // 将列表转换为数组
        pub fn toArray(self: *Self) ![]T {
            // 仅转换有效长度范围内的列表元素
            var nums = try self.mem_allocator.alloc(T, self.size());
            std.mem.set(T, nums, @as(T, 0));
            for (nums) |*num, i| {
                num.* = self.get(i);
            }
            return nums;
        }
    };
}

评论