--- comments: true --- # 14.5   Unbounded knapsack problem In this section, we first solve another common knapsack problem: the unbounded knapsack, and then explore a special case of it: the coin change problem. ## 14.5.1   Unbounded knapsack problem !!! question Given $n$ items, where the weight of the $i^{th}$ item is $wgt[i-1]$ and its value is $val[i-1]$, and a backpack with a capacity of $cap$. **Each item can be selected multiple times**. What is the maximum value of the items that can be put into the backpack without exceeding its capacity? See the example below. ![Example data for the unbounded knapsack problem](unbounded_knapsack_problem.assets/unbounded_knapsack_example.png){ class="animation-figure" }

Figure 14-22   Example data for the unbounded knapsack problem

### 1.   Dynamic programming approach The unbounded knapsack problem is very similar to the 0-1 knapsack problem, **the only difference being that there is no limit on the number of times an item can be chosen**. - In the 0-1 knapsack problem, there is only one of each item, so after placing item $i$ into the backpack, you can only choose from the previous $i-1$ items. - In the unbounded knapsack problem, the quantity of each item is unlimited, so after placing item $i$ in the backpack, **you can still choose from the previous $i$ items**. Under the rules of the unbounded knapsack problem, the state $[i, c]$ can change in two ways. - **Not putting item $i$ in**: As with the 0-1 knapsack problem, transition to $[i-1, c]$. - **Putting item $i$ in**: Unlike the 0-1 knapsack problem, transition to $[i, c-wgt[i-1]]$. The state transition equation thus becomes: $$ dp[i, c] = \max(dp[i-1, c], dp[i, c - wgt[i-1]] + val[i-1]) $$ ### 2.   Code implementation Comparing the code for the two problems, the state transition changes from $i-1$ to $i$, the rest is completely identical: === "Python" ```python title="unbounded_knapsack.py" def unbounded_knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int: """Complete knapsack: Dynamic programming""" n = len(wgt) # Initialize dp table dp = [[0] * (cap + 1) for _ in range(n + 1)] # State transition for i in range(1, n + 1): for c in range(1, cap + 1): if wgt[i - 1] > c: # If exceeding the knapsack capacity, do not choose item i dp[i][c] = dp[i - 1][c] else: # The greater value between not choosing and choosing item i dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]) return dp[n][cap] ``` === "C++" ```cpp title="unbounded_knapsack.cpp" /* Complete knapsack: Dynamic programming */ int unboundedKnapsackDP(vector &wgt, vector &val, int cap) { int n = wgt.size(); // Initialize dp table vector> dp(n + 1, vector(cap + 1, 0)); // State transition for (int i = 1; i <= n; i++) { for (int c = 1; c <= cap; c++) { if (wgt[i - 1] > c) { // If exceeding the knapsack capacity, do not choose item i dp[i][c] = dp[i - 1][c]; } else { // The greater value between not choosing and choosing item i dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]); } } } return dp[n][cap]; } ``` === "Java" ```java title="unbounded_knapsack.java" /* Complete knapsack: Dynamic programming */ int unboundedKnapsackDP(int[] wgt, int[] val, int cap) { int n = wgt.length; // Initialize dp table int[][] dp = new int[n + 1][cap + 1]; // State transition for (int i = 1; i <= n; i++) { for (int c = 1; c <= cap; c++) { if (wgt[i - 1] > c) { // If exceeding the knapsack capacity, do not choose item i dp[i][c] = dp[i - 1][c]; } else { // The greater value between not choosing and choosing item i dp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]); } } } return dp[n][cap]; } ``` === "C#" ```csharp title="unbounded_knapsack.cs" [class]{unbounded_knapsack}-[func]{UnboundedKnapsackDP} ``` === "Go" ```go title="unbounded_knapsack.go" [class]{}-[func]{unboundedKnapsackDP} ``` === "Swift" ```swift title="unbounded_knapsack.swift" [class]{}-[func]{unboundedKnapsackDP} ``` === "JS" ```javascript title="unbounded_knapsack.js" [class]{}-[func]{unboundedKnapsackDP} ``` === "TS" ```typescript title="unbounded_knapsack.ts" [class]{}-[func]{unboundedKnapsackDP} ``` === "Dart" ```dart title="unbounded_knapsack.dart" [class]{}-[func]{unboundedKnapsackDP} ``` === "Rust" ```rust title="unbounded_knapsack.rs" [class]{}-[func]{unbounded_knapsack_dp} ``` === "C" ```c title="unbounded_knapsack.c" [class]{}-[func]{unboundedKnapsackDP} ``` === "Kotlin" ```kotlin title="unbounded_knapsack.kt" [class]{}-[func]{unboundedKnapsackDP} ``` === "Ruby" ```ruby title="unbounded_knapsack.rb" [class]{}-[func]{unbounded_knapsack_dp} ``` === "Zig" ```zig title="unbounded_knapsack.zig" [class]{}-[func]{unboundedKnapsackDP} ``` ### 3.   Space optimization Since the current state comes from the state to the left and above, **the space-optimized solution should perform a forward traversal for each row in the $dp$ table**. This traversal order is the opposite of that for the 0-1 knapsack. Please refer to Figure 14-23 to understand the difference. === "<1>" ![Dynamic programming process for the unbounded knapsack problem after space optimization](unbounded_knapsack_problem.assets/unbounded_knapsack_dp_comp_step1.png){ class="animation-figure" } === "<2>" ![unbounded_knapsack_dp_comp_step2](unbounded_knapsack_problem.assets/unbounded_knapsack_dp_comp_step2.png){ class="animation-figure" } === "<3>" ![unbounded_knapsack_dp_comp_step3](unbounded_knapsack_problem.assets/unbounded_knapsack_dp_comp_step3.png){ class="animation-figure" } === "<4>" ![unbounded_knapsack_dp_comp_step4](unbounded_knapsack_problem.assets/unbounded_knapsack_dp_comp_step4.png){ class="animation-figure" } === "<5>" ![unbounded_knapsack_dp_comp_step5](unbounded_knapsack_problem.assets/unbounded_knapsack_dp_comp_step5.png){ class="animation-figure" } === "<6>" ![unbounded_knapsack_dp_comp_step6](unbounded_knapsack_problem.assets/unbounded_knapsack_dp_comp_step6.png){ class="animation-figure" }

Figure 14-23   Dynamic programming process for the unbounded knapsack problem after space optimization

The code implementation is quite simple, just remove the first dimension of the array `dp`: === "Python" ```python title="unbounded_knapsack.py" def unbounded_knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int: """Complete knapsack: Space-optimized dynamic programming""" n = len(wgt) # Initialize dp table dp = [0] * (cap + 1) # State transition for i in range(1, n + 1): # Traverse in order for c in range(1, cap + 1): if wgt[i - 1] > c: # If exceeding the knapsack capacity, do not choose item i dp[c] = dp[c] else: # The greater value between not choosing and choosing item i dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]) return dp[cap] ``` === "C++" ```cpp title="unbounded_knapsack.cpp" /* Complete knapsack: Space-optimized dynamic programming */ int unboundedKnapsackDPComp(vector &wgt, vector &val, int cap) { int n = wgt.size(); // Initialize dp table vector dp(cap + 1, 0); // State transition for (int i = 1; i <= n; i++) { for (int c = 1; c <= cap; c++) { if (wgt[i - 1] > c) { // If exceeding the knapsack capacity, do not choose item i dp[c] = dp[c]; } else { // The greater value between not choosing and choosing item i dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]); } } } return dp[cap]; } ``` === "Java" ```java title="unbounded_knapsack.java" /* Complete knapsack: Space-optimized dynamic programming */ int unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) { int n = wgt.length; // Initialize dp table int[] dp = new int[cap + 1]; // State transition for (int i = 1; i <= n; i++) { for (int c = 1; c <= cap; c++) { if (wgt[i - 1] > c) { // If exceeding the knapsack capacity, do not choose item i dp[c] = dp[c]; } else { // The greater value between not choosing and choosing item i dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]); } } } return dp[cap]; } ``` === "C#" ```csharp title="unbounded_knapsack.cs" [class]{unbounded_knapsack}-[func]{UnboundedKnapsackDPComp} ``` === "Go" ```go title="unbounded_knapsack.go" [class]{}-[func]{unboundedKnapsackDPComp} ``` === "Swift" ```swift title="unbounded_knapsack.swift" [class]{}-[func]{unboundedKnapsackDPComp} ``` === "JS" ```javascript title="unbounded_knapsack.js" [class]{}-[func]{unboundedKnapsackDPComp} ``` === "TS" ```typescript title="unbounded_knapsack.ts" [class]{}-[func]{unboundedKnapsackDPComp} ``` === "Dart" ```dart title="unbounded_knapsack.dart" [class]{}-[func]{unboundedKnapsackDPComp} ``` === "Rust" ```rust title="unbounded_knapsack.rs" [class]{}-[func]{unbounded_knapsack_dp_comp} ``` === "C" ```c title="unbounded_knapsack.c" [class]{}-[func]{unboundedKnapsackDPComp} ``` === "Kotlin" ```kotlin title="unbounded_knapsack.kt" [class]{}-[func]{unboundedKnapsackDPComp} ``` === "Ruby" ```ruby title="unbounded_knapsack.rb" [class]{}-[func]{unbounded_knapsack_dp_comp} ``` === "Zig" ```zig title="unbounded_knapsack.zig" [class]{}-[func]{unboundedKnapsackDPComp} ``` ## 14.5.2   Coin change problem The knapsack problem is a representative of a large class of dynamic programming problems and has many variants, such as the coin change problem. !!! question Given $n$ types of coins, the denomination of the $i^{th}$ type of coin is $coins[i - 1]$, and the target amount is $amt$. **Each type of coin can be selected multiple times**. What is the minimum number of coins needed to make up the target amount? If it is impossible to make up the target amount, return $-1$. See the example below. ![Example data for the coin change problem](unbounded_knapsack_problem.assets/coin_change_example.png){ class="animation-figure" }

Figure 14-24   Example data for the coin change problem

### 1.   Dynamic programming approach **The coin change can be seen as a special case of the unbounded knapsack problem**, sharing the following similarities and differences. - The two problems can be converted into each other: "item" corresponds to "coin", "item weight" corresponds to "coin denomination", and "backpack capacity" corresponds to "target amount". - The optimization goals are opposite: the unbounded knapsack problem aims to maximize the value of items, while the coin change problem aims to minimize the number of coins. - The unbounded knapsack problem seeks solutions "not exceeding" the backpack capacity, while the coin change seeks solutions that "exactly" make up the target amount. **First step: Think through each round's decision-making, define the state, and thus derive the $dp$ table** The state $[i, a]$ corresponds to the sub-problem: **the minimum number of coins that can make up the amount $a$ using the first $i$ types of coins**, denoted as $dp[i, a]$. The two-dimensional $dp$ table is of size $(n+1) \times (amt+1)$. **Second step: Identify the optimal substructure and derive the state transition equation** This problem differs from the unbounded knapsack problem in two aspects of the state transition equation. - This problem seeks the minimum, so the operator $\max()$ needs to be changed to $\min()$. - The optimization is focused on the number of coins, so simply add $+1$ when a coin is chosen. $$ dp[i, a] = \min(dp[i-1, a], dp[i, a - coins[i-1]] + 1) $$ **Third step: Define boundary conditions and state transition order** When the target amount is $0$, the minimum number of coins needed to make it up is $0$, so all $dp[i, 0]$ in the first column are $0$. When there are no coins, **it is impossible to make up any amount >0**, which is an invalid solution. To allow the $\min()$ function in the state transition equation to recognize and filter out invalid solutions, consider using $+\infty$ to represent them, i.e., set all $dp[0, a]$ in the first row to $+\infty$. ### 2.   Code implementation Most programming languages do not provide a $+\infty$ variable, only the maximum value of an integer `int` can be used as a substitute. This can lead to overflow: the $+1$ operation in the state transition equation may overflow. For this reason, we use the number $amt + 1$ to represent an invalid solution, because the maximum number of coins needed to make up $amt$ is at most $amt$. Before returning the result, check if $dp[n, amt]$ equals $amt + 1$, and if so, return $-1$, indicating that the target amount cannot be made up. The code is as follows: === "Python" ```python title="coin_change.py" def coin_change_dp(coins: list[int], amt: int) -> int: """Coin change: Dynamic programming""" n = len(coins) MAX = amt + 1 # Initialize dp table dp = [[0] * (amt + 1) for _ in range(n + 1)] # State transition: first row and first column for a in range(1, amt + 1): dp[0][a] = MAX # State transition: the rest of the rows and columns for i in range(1, n + 1): for a in range(1, amt + 1): if coins[i - 1] > a: # If exceeding the target amount, do not choose coin i dp[i][a] = dp[i - 1][a] else: # The smaller value between not choosing and choosing coin i dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1) return dp[n][amt] if dp[n][amt] != MAX else -1 ``` === "C++" ```cpp title="coin_change.cpp" /* Coin change: Dynamic programming */ int coinChangeDP(vector &coins, int amt) { int n = coins.size(); int MAX = amt + 1; // Initialize dp table vector> dp(n + 1, vector(amt + 1, 0)); // State transition: first row and first column for (int a = 1; a <= amt; a++) { dp[0][a] = MAX; } // State transition: the rest of the rows and columns for (int i = 1; i <= n; i++) { for (int a = 1; a <= amt; a++) { if (coins[i - 1] > a) { // If exceeding the target amount, do not choose coin i dp[i][a] = dp[i - 1][a]; } else { // The smaller value between not choosing and choosing coin i dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1); } } } return dp[n][amt] != MAX ? dp[n][amt] : -1; } ``` === "Java" ```java title="coin_change.java" /* Coin change: Dynamic programming */ int coinChangeDP(int[] coins, int amt) { int n = coins.length; int MAX = amt + 1; // Initialize dp table int[][] dp = new int[n + 1][amt + 1]; // State transition: first row and first column for (int a = 1; a <= amt; a++) { dp[0][a] = MAX; } // State transition: the rest of the rows and columns for (int i = 1; i <= n; i++) { for (int a = 1; a <= amt; a++) { if (coins[i - 1] > a) { // If exceeding the target amount, do not choose coin i dp[i][a] = dp[i - 1][a]; } else { // The smaller value between not choosing and choosing coin i dp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1); } } } return dp[n][amt] != MAX ? dp[n][amt] : -1; } ``` === "C#" ```csharp title="coin_change.cs" [class]{coin_change}-[func]{CoinChangeDP} ``` === "Go" ```go title="coin_change.go" [class]{}-[func]{coinChangeDP} ``` === "Swift" ```swift title="coin_change.swift" [class]{}-[func]{coinChangeDP} ``` === "JS" ```javascript title="coin_change.js" [class]{}-[func]{coinChangeDP} ``` === "TS" ```typescript title="coin_change.ts" [class]{}-[func]{coinChangeDP} ``` === "Dart" ```dart title="coin_change.dart" [class]{}-[func]{coinChangeDP} ``` === "Rust" ```rust title="coin_change.rs" [class]{}-[func]{coin_change_dp} ``` === "C" ```c title="coin_change.c" [class]{}-[func]{coinChangeDP} ``` === "Kotlin" ```kotlin title="coin_change.kt" [class]{}-[func]{coinChangeDP} ``` === "Ruby" ```ruby title="coin_change.rb" [class]{}-[func]{coin_change_dp} ``` === "Zig" ```zig title="coin_change.zig" [class]{}-[func]{coinChangeDP} ``` Figure 14-25 show the dynamic programming process for the coin change problem, which is very similar to the unbounded knapsack problem. === "<1>" ![Dynamic programming process for the coin change problem](unbounded_knapsack_problem.assets/coin_change_dp_step1.png){ class="animation-figure" } === "<2>" ![coin_change_dp_step2](unbounded_knapsack_problem.assets/coin_change_dp_step2.png){ class="animation-figure" } === "<3>" ![coin_change_dp_step3](unbounded_knapsack_problem.assets/coin_change_dp_step3.png){ class="animation-figure" } === "<4>" ![coin_change_dp_step4](unbounded_knapsack_problem.assets/coin_change_dp_step4.png){ class="animation-figure" } === "<5>" ![coin_change_dp_step5](unbounded_knapsack_problem.assets/coin_change_dp_step5.png){ class="animation-figure" } === "<6>" ![coin_change_dp_step6](unbounded_knapsack_problem.assets/coin_change_dp_step6.png){ class="animation-figure" } === "<7>" ![coin_change_dp_step7](unbounded_knapsack_problem.assets/coin_change_dp_step7.png){ class="animation-figure" } === "<8>" ![coin_change_dp_step8](unbounded_knapsack_problem.assets/coin_change_dp_step8.png){ class="animation-figure" } === "<9>" ![coin_change_dp_step9](unbounded_knapsack_problem.assets/coin_change_dp_step9.png){ class="animation-figure" } === "<10>" ![coin_change_dp_step10](unbounded_knapsack_problem.assets/coin_change_dp_step10.png){ class="animation-figure" } === "<11>" ![coin_change_dp_step11](unbounded_knapsack_problem.assets/coin_change_dp_step11.png){ class="animation-figure" } === "<12>" ![coin_change_dp_step12](unbounded_knapsack_problem.assets/coin_change_dp_step12.png){ class="animation-figure" } === "<13>" ![coin_change_dp_step13](unbounded_knapsack_problem.assets/coin_change_dp_step13.png){ class="animation-figure" } === "<14>" ![coin_change_dp_step14](unbounded_knapsack_problem.assets/coin_change_dp_step14.png){ class="animation-figure" } === "<15>" ![coin_change_dp_step15](unbounded_knapsack_problem.assets/coin_change_dp_step15.png){ class="animation-figure" }

Figure 14-25   Dynamic programming process for the coin change problem

### 3.   Space optimization The space optimization for the coin change problem is handled in the same way as for the unbounded knapsack problem: === "Python" ```python title="coin_change.py" def coin_change_dp_comp(coins: list[int], amt: int) -> int: """Coin change: Space-optimized dynamic programming""" n = len(coins) MAX = amt + 1 # Initialize dp table dp = [MAX] * (amt + 1) dp[0] = 0 # State transition for i in range(1, n + 1): # Traverse in order for a in range(1, amt + 1): if coins[i - 1] > a: # If exceeding the target amount, do not choose coin i dp[a] = dp[a] else: # The smaller value between not choosing and choosing coin i dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1) return dp[amt] if dp[amt] != MAX else -1 ``` === "C++" ```cpp title="coin_change.cpp" /* Coin change: Space-optimized dynamic programming */ int coinChangeDPComp(vector &coins, int amt) { int n = coins.size(); int MAX = amt + 1; // Initialize dp table vector dp(amt + 1, MAX); dp[0] = 0; // State transition for (int i = 1; i <= n; i++) { for (int a = 1; a <= amt; a++) { if (coins[i - 1] > a) { // If exceeding the target amount, do not choose coin i dp[a] = dp[a]; } else { // The smaller value between not choosing and choosing coin i dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1); } } } return dp[amt] != MAX ? dp[amt] : -1; } ``` === "Java" ```java title="coin_change.java" /* Coin change: Space-optimized dynamic programming */ int coinChangeDPComp(int[] coins, int amt) { int n = coins.length; int MAX = amt + 1; // Initialize dp table int[] dp = new int[amt + 1]; Arrays.fill(dp, MAX); dp[0] = 0; // State transition for (int i = 1; i <= n; i++) { for (int a = 1; a <= amt; a++) { if (coins[i - 1] > a) { // If exceeding the target amount, do not choose coin i dp[a] = dp[a]; } else { // The smaller value between not choosing and choosing coin i dp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1); } } } return dp[amt] != MAX ? dp[amt] : -1; } ``` === "C#" ```csharp title="coin_change.cs" [class]{coin_change}-[func]{CoinChangeDPComp} ``` === "Go" ```go title="coin_change.go" [class]{}-[func]{coinChangeDPComp} ``` === "Swift" ```swift title="coin_change.swift" [class]{}-[func]{coinChangeDPComp} ``` === "JS" ```javascript title="coin_change.js" [class]{}-[func]{coinChangeDPComp} ``` === "TS" ```typescript title="coin_change.ts" [class]{}-[func]{coinChangeDPComp} ``` === "Dart" ```dart title="coin_change.dart" [class]{}-[func]{coinChangeDPComp} ``` === "Rust" ```rust title="coin_change.rs" [class]{}-[func]{coin_change_dp_comp} ``` === "C" ```c title="coin_change.c" [class]{}-[func]{coinChangeDPComp} ``` === "Kotlin" ```kotlin title="coin_change.kt" [class]{}-[func]{coinChangeDPComp} ``` === "Ruby" ```ruby title="coin_change.rb" [class]{}-[func]{coin_change_dp_comp} ``` === "Zig" ```zig title="coin_change.zig" [class]{}-[func]{coinChangeDPComp} ``` ## 14.5.3   Coin change problem II !!! question Given $n$ types of coins, where the denomination of the $i^{th}$ type of coin is $coins[i - 1]$, and the target amount is $amt$. Each type of coin can be selected multiple times, **ask how many combinations of coins can make up the target amount**. See the example below. ![Example data for Coin Change Problem II](unbounded_knapsack_problem.assets/coin_change_ii_example.png){ class="animation-figure" }

Figure 14-26   Example data for Coin Change Problem II

### 1.   Dynamic programming approach Compared to the previous problem, the goal of this problem is to determine the number of combinations, so the sub-problem becomes: **the number of combinations that can make up amount $a$ using the first $i$ types of coins**. The $dp$ table remains a two-dimensional matrix of size $(n+1) \times (amt + 1)$. The number of combinations for the current state is the sum of the combinations from not selecting the current coin and selecting the current coin. The state transition equation is: $$ dp[i, a] = dp[i-1, a] + dp[i, a - coins[i-1]] $$ When the target amount is $0$, no coins are needed to make up the target amount, so all $dp[i, 0]$ in the first column should be initialized to $1$. When there are no coins, it is impossible to make up any amount >0, so all $dp[0, a]$ in the first row should be set to $0$. ### 2.   Code implementation === "Python" ```python title="coin_change_ii.py" def coin_change_ii_dp(coins: list[int], amt: int) -> int: """Coin change II: Dynamic programming""" n = len(coins) # Initialize dp table dp = [[0] * (amt + 1) for _ in range(n + 1)] # Initialize first column for i in range(n + 1): dp[i][0] = 1 # State transition for i in range(1, n + 1): for a in range(1, amt + 1): if coins[i - 1] > a: # If exceeding the target amount, do not choose coin i dp[i][a] = dp[i - 1][a] else: # The sum of the two options of not choosing and choosing coin i dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]] return dp[n][amt] ``` === "C++" ```cpp title="coin_change_ii.cpp" /* Coin change II: Dynamic programming */ int coinChangeIIDP(vector &coins, int amt) { int n = coins.size(); // Initialize dp table vector> dp(n + 1, vector(amt + 1, 0)); // Initialize first column for (int i = 0; i <= n; i++) { dp[i][0] = 1; } // State transition for (int i = 1; i <= n; i++) { for (int a = 1; a <= amt; a++) { if (coins[i - 1] > a) { // If exceeding the target amount, do not choose coin i dp[i][a] = dp[i - 1][a]; } else { // The sum of the two options of not choosing and choosing coin i dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]; } } } return dp[n][amt]; } ``` === "Java" ```java title="coin_change_ii.java" /* Coin change II: Dynamic programming */ int coinChangeIIDP(int[] coins, int amt) { int n = coins.length; // Initialize dp table int[][] dp = new int[n + 1][amt + 1]; // Initialize first column for (int i = 0; i <= n; i++) { dp[i][0] = 1; } // State transition for (int i = 1; i <= n; i++) { for (int a = 1; a <= amt; a++) { if (coins[i - 1] > a) { // If exceeding the target amount, do not choose coin i dp[i][a] = dp[i - 1][a]; } else { // The sum of the two options of not choosing and choosing coin i dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]; } } } return dp[n][amt]; } ``` === "C#" ```csharp title="coin_change_ii.cs" [class]{coin_change_ii}-[func]{CoinChangeIIDP} ``` === "Go" ```go title="coin_change_ii.go" [class]{}-[func]{coinChangeIIDP} ``` === "Swift" ```swift title="coin_change_ii.swift" [class]{}-[func]{coinChangeIIDP} ``` === "JS" ```javascript title="coin_change_ii.js" [class]{}-[func]{coinChangeIIDP} ``` === "TS" ```typescript title="coin_change_ii.ts" [class]{}-[func]{coinChangeIIDP} ``` === "Dart" ```dart title="coin_change_ii.dart" [class]{}-[func]{coinChangeIIDP} ``` === "Rust" ```rust title="coin_change_ii.rs" [class]{}-[func]{coin_change_ii_dp} ``` === "C" ```c title="coin_change_ii.c" [class]{}-[func]{coinChangeIIDP} ``` === "Kotlin" ```kotlin title="coin_change_ii.kt" [class]{}-[func]{coinChangeIIDP} ``` === "Ruby" ```ruby title="coin_change_ii.rb" [class]{}-[func]{coin_change_ii_dp} ``` === "Zig" ```zig title="coin_change_ii.zig" [class]{}-[func]{coinChangeIIDP} ``` ### 3.   Space optimization The space optimization approach is the same, just remove the coin dimension: === "Python" ```python title="coin_change_ii.py" def coin_change_ii_dp_comp(coins: list[int], amt: int) -> int: """Coin change II: Space-optimized dynamic programming""" n = len(coins) # Initialize dp table dp = [0] * (amt + 1) dp[0] = 1 # State transition for i in range(1, n + 1): # Traverse in order for a in range(1, amt + 1): if coins[i - 1] > a: # If exceeding the target amount, do not choose coin i dp[a] = dp[a] else: # The sum of the two options of not choosing and choosing coin i dp[a] = dp[a] + dp[a - coins[i - 1]] return dp[amt] ``` === "C++" ```cpp title="coin_change_ii.cpp" /* Coin change II: Space-optimized dynamic programming */ int coinChangeIIDPComp(vector &coins, int amt) { int n = coins.size(); // Initialize dp table vector dp(amt + 1, 0); dp[0] = 1; // State transition for (int i = 1; i <= n; i++) { for (int a = 1; a <= amt; a++) { if (coins[i - 1] > a) { // If exceeding the target amount, do not choose coin i dp[a] = dp[a]; } else { // The sum of the two options of not choosing and choosing coin i dp[a] = dp[a] + dp[a - coins[i - 1]]; } } } return dp[amt]; } ``` === "Java" ```java title="coin_change_ii.java" /* Coin change II: Space-optimized dynamic programming */ int coinChangeIIDPComp(int[] coins, int amt) { int n = coins.length; // Initialize dp table int[] dp = new int[amt + 1]; dp[0] = 1; // State transition for (int i = 1; i <= n; i++) { for (int a = 1; a <= amt; a++) { if (coins[i - 1] > a) { // If exceeding the target amount, do not choose coin i dp[a] = dp[a]; } else { // The sum of the two options of not choosing and choosing coin i dp[a] = dp[a] + dp[a - coins[i - 1]]; } } } return dp[amt]; } ``` === "C#" ```csharp title="coin_change_ii.cs" [class]{coin_change_ii}-[func]{CoinChangeIIDPComp} ``` === "Go" ```go title="coin_change_ii.go" [class]{}-[func]{coinChangeIIDPComp} ``` === "Swift" ```swift title="coin_change_ii.swift" [class]{}-[func]{coinChangeIIDPComp} ``` === "JS" ```javascript title="coin_change_ii.js" [class]{}-[func]{coinChangeIIDPComp} ``` === "TS" ```typescript title="coin_change_ii.ts" [class]{}-[func]{coinChangeIIDPComp} ``` === "Dart" ```dart title="coin_change_ii.dart" [class]{}-[func]{coinChangeIIDPComp} ``` === "Rust" ```rust title="coin_change_ii.rs" [class]{}-[func]{coin_change_ii_dp_comp} ``` === "C" ```c title="coin_change_ii.c" [class]{}-[func]{coinChangeIIDPComp} ``` === "Kotlin" ```kotlin title="coin_change_ii.kt" [class]{}-[func]{coinChangeIIDPComp} ``` === "Ruby" ```ruby title="coin_change_ii.rb" [class]{}-[func]{coin_change_ii_dp_comp} ``` === "Zig" ```zig title="coin_change_ii.zig" [class]{}-[func]{coinChangeIIDPComp} ```