跳转至

2.4. 权衡时间与空间

理想情况下,我们希望算法的时间复杂度和空间复杂度都能够达到最优,而实际上,同时优化时间复杂度和空间复杂度是非常困难的。

降低时间复杂度,往往是以提升空间复杂度为代价的,反之亦然。我们把牺牲内存空间来提升算法运行速度的思路称为「以空间换时间」;反之,称之为「以时间换空间」。选择哪种思路取决于我们更看重哪个方面。

大多数情况下,时间都是比空间更宝贵的,只要空间复杂度不要太离谱、能接受就行,因此以空间换时间最为常用

2.4.1. 示例题目 *

以 LeetCode 全站第一题 两数之和 为例。

两数之和

给定一个整数数组 nums 和一个整数目标值 target ,请你在该数组中找出“和”为目标值 target 的那两个整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

「暴力枚举」和「辅助哈希表」分别为 空间最优时间最优 的两种解法。本着时间比空间更宝贵的原则,后者是本题的最佳解法。

方法一:暴力枚举

时间复杂度 \(O(N^2)\) ,空间复杂度 \(O(1)\) ,属于「时间换空间」。

虽然仅使用常数大小的额外空间,但运行速度过慢。

leetcode_two_sum.java
/* 方法一:暴力枚举 */
int[] twoSumBruteForce(int[] nums, int target) {
    int size = nums.length;
    // 两层循环,时间复杂度 O(n^2)
    for (int i = 0; i < size - 1; i++) {
        for (int j = i + 1; j < size; j++) {
            if (nums[i] + nums[j] == target)
                return new int[] { i, j };
        }
    }
    return new int[0];
}
leetcode_two_sum.cpp
/* 方法一:暴力枚举 */
vector<int> twoSumBruteForce(vector<int>& nums, int target) {
    int size = nums.size();
    // 两层循环,时间复杂度 O(n^2)
    for (int i = 0; i < size - 1; i++) {
        for (int j = i + 1; j < size; j++) {
            if (nums[i] + nums[j] == target)
                return { i, j };
        }
    }
    return {};
}
leetcode_two_sum.py
""" 方法一:暴力枚举 """
def two_sum_brute_force(nums: List[int], target: int) -> List[int]:
    # 两层循环,时间复杂度 O(n^2)
    for i in range(len(nums) - 1):
        for j in range(i + 1, len(nums)):
            if nums[i] + nums[j] == target:
                return i, j
    return []
leetcode_two_sum.go
func twoSumBruteForce(nums []int, target int) []int {
    size := len(nums)
    // 两层循环,时间复杂度 O(n^2)
    for i := 0; i < size-1; i++ {
        for j := i + 1; i < size; j++ {
            if nums[i]+nums[j] == target {
                return []int{i, j}
            }
        }
    }
    return nil
}
leetcode_two_sum.js
/* 方法一:暴力枚举 */
function twoSumBruteForce(nums, target) {
    const n = nums.length;
    // 两层循环,时间复杂度 O(n^2)
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
            if (nums[i] + nums[j] === target) {
                return [i, j];
            }
        }
    }
    return [];
}
leetcode_two_sum.ts
/* 方法一:暴力枚举 */
function twoSumBruteForce(nums: number[], target: number): number[] {
    const n = nums.length;
    // 两层循环,时间复杂度 O(n^2)
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
            if (nums[i] + nums[j] === target) {
                return [i, j];
            }
        }
    }
    return [];
};
leetcode_two_sum.c

leetcode_two_sum.cs
class SolutionBruteForce
{
    public int[] twoSum(int[] nums, int target)
    {
        int size = nums.Length;
        // 两层循环,时间复杂度 O(n^2)
        for (int i = 0; i < size - 1; i++)
        {
            for (int j = i + 1; j < size; j++)
            {
                if (nums[i] + nums[j] == target)
                    return new int[] { i, j };
            }
        }
        return new int[0];
    }
}
leetcode_two_sum.swift
func twoSumBruteForce(nums: [Int], target: Int) -> [Int] {
    // 两层循环,时间复杂度 O(n^2)
    for i in nums.indices.dropLast() {
        for j in nums.indices.dropFirst(i + 1) {
            if nums[i] + nums[j] == target {
                return [i, j]
            }
        }
    }
    return [0]
}
leetcode_two_sum.zig
const SolutionBruteForce = struct {
    pub fn twoSum(self: *SolutionBruteForce, nums: []i32, target: i32) [2]i32 {
        _ = self;
        var size: usize = nums.len;
        var i: usize = 0;
        // 两层循环,时间复杂度 O(n^2)
        while (i < size - 1) : (i += 1) {
            var j = i + 1;
            while (j < size) : (j += 1) {
                if (nums[i] + nums[j] == target) {
                    return [_]i32{@intCast(i32, i), @intCast(i32, j)};
                }
            }
        }
        return undefined;
    }
};

方法二:辅助哈希表

时间复杂度 \(O(N)\) ,空间复杂度 \(O(N)\) ,属于「空间换时间」。

借助辅助哈希表 dic ,通过保存数组元素与索引的映射来提升算法运行速度。

leetcode_two_sum.java
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target) {
    int size = nums.length;
    // 辅助哈希表,空间复杂度 O(n)
    Map<Integer, Integer> dic = new HashMap<>();
    // 单层循环,时间复杂度 O(n)
    for (int i = 0; i < size; i++) {
        if (dic.containsKey(target - nums[i])) {
            return new int[] { dic.get(target - nums[i]), i };
        }
        dic.put(nums[i], i);
    }
    return new int[0];
}
leetcode_two_sum.cpp
/* 方法二:辅助哈希表 */
vector<int> twoSumHashTable(vector<int>& nums, int target) {
    int size = nums.size();
    // 辅助哈希表,空间复杂度 O(n)
    unordered_map<int, int> dic;
    // 单层循环,时间复杂度 O(n)
    for (int i = 0; i < size; i++) {
        if (dic.find(target - nums[i]) != dic.end()) {
            return { dic[target - nums[i]], i };
        }
        dic.emplace(nums[i], i);
    }
    return {};
}
leetcode_two_sum.py
""" 方法二:辅助哈希表 """
def two_sum_hash_table(nums: List[int], target: int) -> List[int]:
    # 辅助哈希表,空间复杂度 O(n)
    dic = {}
    # 单层循环,时间复杂度 O(n)
    for i in range(len(nums)):
        if target - nums[i] in dic:
            return dic[target - nums[i]], i
        dic[nums[i]] = i
    return []
leetcode_two_sum.go
func twoSumHashTable(nums []int, target int) []int {
    // 辅助哈希表,空间复杂度 O(n)
    hashTable := map[int]int{}
    // 单层循环,时间复杂度 O(n)
    for idx, val := range nums {
        if preIdx, ok := hashTable[target-val]; ok {
            return []int{preIdx, idx}
        }
        hashTable[val] = idx
    }
    return nil
}
leetcode_two_sum.js
/* 方法二:辅助哈希表 */
function twoSumHashTable(nums, target) {
    // 辅助哈希表,空间复杂度 O(n)
    let m = {};
    // 单层循环,时间复杂度 O(n)
    for (let i = 0; i < nums.length; i++) {
        if (m[nums[i]] !== undefined) {
            return [m[nums[i]], i];
        } else {
            m[target - nums[i]] = i;
        }
    }
    return [];
}
leetcode_two_sum.ts
/* 方法二:辅助哈希表 */
function twoSumHashTable(nums: number[], target: number): number[] {
    // 辅助哈希表,空间复杂度 O(n)
    let m: Map<number, number> = new Map();
    // 单层循环,时间复杂度 O(n)
    for (let i = 0; i < nums.length; i++) {
        let index = m.get(nums[i]);
        if (index !== undefined) {
            return [index, i];
        } else {
            m.set(target - nums[i], i);
        }
    }
    return [];
};
leetcode_two_sum.c

leetcode_two_sum.cs
class SolutionHashMap
{
    public int[] twoSum(int[] nums, int target)
    {
        int size = nums.Length;
        // 辅助哈希表,空间复杂度 O(n)
        Dictionary<int, int> dic = new();
        // 单层循环,时间复杂度 O(n)
        for (int i = 0; i < size; i++)
        {
            if (dic.ContainsKey(target - nums[i]))
            {
                return new int[] { dic[target - nums[i]], i };
            }
            dic.Add(nums[i], i);
        }
        return new int[0];
    }
}
leetcode_two_sum.swift
func twoSumHashTable(nums: [Int], target: Int) -> [Int] {
    // 辅助哈希表,空间复杂度 O(n)
    var dic: [Int: Int] = [:]
    // 单层循环,时间复杂度 O(n)
    for i in nums.indices {
        if let j = dic[target - nums[i]] {
            return [j, i]
        }
        dic[nums[i]] = i
    }
    return [0]
}
leetcode_two_sum.zig
const SolutionHashMap = struct {
    pub fn twoSum(self: *SolutionHashMap, nums: []i32, target: i32) ![2]i32 {
        _ = self;
        var size: usize = nums.len;
        // 辅助哈希表,空间复杂度 O(n)
        var dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);
        defer dic.deinit();
        var i: usize = 0;
        // 单层循环,时间复杂度 O(n)
        while (i < size) : (i += 1) {
            if (dic.contains(target - nums[i])) {
                return [_]i32{dic.get(target - nums[i]).?, @intCast(i32, i)};
            }
            try dic.put(nums[i], @intCast(i32, i));
        }
        return undefined;
    }
};

评论