# 分治搜索策略 我们已经学过,搜索算法分为两大类。 - **暴力搜索**:它通过遍历数据结构实现,时间复杂度为 $O(n)$ 。 - **自适应搜索**:它利用特有的数据组织形式或先验信息,可达到 $O(\log n)$ 甚至 $O(1)$ 的时间复杂度。 实际上,**时间复杂度为 $O(\log n)$ 的搜索算法通常都是基于分治策略实现的**,例如二分查找和树。 - 二分查找的每一步都将问题(在数组中搜索目标元素)分解为一个小问题(在数组的一半中搜索目标元素),这个过程一直持续到数组为空或找到目标元素为止。 - 树是分治关系的代表,在二叉搜索树、AVL 树、堆等数据结构中,各种操作的时间复杂度皆为 $O(\log n)$ 。 二分查找的分治策略如下所示。 - **问题可以被分解**:二分查找递归地将原问题(在数组中进行查找)分解为子问题(在数组的一半中进行查找),这是通过比较中间元素和目标元素来实现的。 - **子问题是独立的**:在二分查找中,每轮只处理一个子问题,它不受另外子问题的影响。 - **子问题的解无须合并**:二分查找旨在查找一个特定元素,因此不需要将子问题的解进行合并。当子问题得到解决时,原问题也会同时得到解决。 分治能够提升搜索效率,本质上是因为暴力搜索每轮只能排除一个选项,**而分治搜索每轮可以排除一半选项**。 ### 基于分治实现二分 在之前的章节中,二分查找是基于递推(迭代)实现的。现在我们基于分治(递归)来实现它。 !!! question 给定一个长度为 $n$ 的有序数组 `nums` ,数组中所有元素都是唯一的,请查找元素 `target` 。 从分治角度,我们将搜索区间 $[i, j]$ 对应的子问题记为 $f(i, j)$ 。 从原问题 $f(0, n-1)$ 为起始点,通过以下步骤进行二分查找。 1. 计算搜索区间 $[i, j]$ 的中点 $m$ ,根据它排除一半搜索区间。 2. 递归求解规模减小一半的子问题,可能为 $f(i, m-1)$ 或 $f(m+1, j)$ 。 3. 循环第 `1.` 和 `2.` 步,直至找到 `target` 或区间为空时返回。 下图展示了在数组中二分查找元素 $6$ 的分治过程。 ![二分查找的分治过程](binary_search_recur.assets/binary_search_recur.png) 在实现代码中,我们声明一个递归函数 `dfs()` 来求解问题 $f(i, j)$ 。 === "Java" ```java title="binary_search_recur.java" [class]{binary_search_recur}-[func]{dfs} [class]{binary_search_recur}-[func]{binarySearch} ``` === "C++" ```cpp title="binary_search_recur.cpp" [class]{}-[func]{dfs} [class]{}-[func]{binarySearch} ``` === "Python" ```python title="binary_search_recur.py" [class]{}-[func]{dfs} [class]{}-[func]{binary_search} ``` === "Go" ```go title="binary_search_recur.go" [class]{}-[func]{dfs} [class]{}-[func]{binarySearch} ``` === "JS" ```javascript title="binary_search_recur.js" [class]{}-[func]{dfs} [class]{}-[func]{binarySearch} ``` === "TS" ```typescript title="binary_search_recur.ts" [class]{}-[func]{dfs} [class]{}-[func]{binarySearch} ``` === "C" ```c title="binary_search_recur.c" [class]{}-[func]{dfs} [class]{}-[func]{binarySearch} ``` === "C#" ```csharp title="binary_search_recur.cs" [class]{binary_search_recur}-[func]{dfs} [class]{binary_search_recur}-[func]{binarySearch} ``` === "Swift" ```swift title="binary_search_recur.swift" [class]{}-[func]{dfs} [class]{}-[func]{binarySearch} ``` === "Zig" ```zig title="binary_search_recur.zig" [class]{}-[func]{dfs} [class]{}-[func]{binarySearch} ``` === "Dart" ```dart title="binary_search_recur.dart" [class]{}-[func]{dfs} [class]{}-[func]{binarySearch} ``` === "Rust" ```rust title="binary_search_recur.rs" [class]{}-[func]{dfs} [class]{}-[func]{binary_search} ```