""" File: time_complexity.py Created Time: 2022-11-25 Author: krahets (krahets@163.com) """ def constant(n: int) -> int: """常數階""" count = 0 size = 100000 for _ in range(size): count += 1 return count def linear(n: int) -> int: """線性階""" count = 0 for _ in range(n): count += 1 return count def array_traversal(nums: list[int]) -> int: """線性階(走訪陣列)""" count = 0 # 迴圈次數與陣列長度成正比 for num in nums: count += 1 return count def quadratic(n: int) -> int: """平方階""" count = 0 # 迴圈次數與資料大小 n 成平方關係 for i in range(n): for j in range(n): count += 1 return count def bubble_sort(nums: list[int]) -> int: """平方階(泡沫排序)""" count = 0 # 計數器 # 外迴圈:未排序區間為 [0, i] for i in range(len(nums) - 1, 0, -1): # 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端 for j in range(i): if nums[j] > nums[j + 1]: # 交換 nums[j] 與 nums[j + 1] tmp: int = nums[j] nums[j] = nums[j + 1] nums[j + 1] = tmp count += 3 # 元素交換包含 3 個單元操作 return count def exponential(n: int) -> int: """指數階(迴圈實現)""" count = 0 base = 1 # 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1) for _ in range(n): for _ in range(base): count += 1 base *= 2 # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count def exp_recur(n: int) -> int: """指數階(遞迴實現)""" if n == 1: return 1 return exp_recur(n - 1) + exp_recur(n - 1) + 1 def logarithmic(n: int) -> int: """對數階(迴圈實現)""" count = 0 while n > 1: n = n / 2 count += 1 return count def log_recur(n: int) -> int: """對數階(遞迴實現)""" if n <= 1: return 0 return log_recur(n / 2) + 1 def linear_log_recur(n: int) -> int: """線性對數階""" if n <= 1: return 1 # 一分為二,子問題的規模減小一半 count = linear_log_recur(n // 2) + linear_log_recur(n // 2) # 當前子問題包含 n 個操作 for _ in range(n): count += 1 return count def factorial_recur(n: int) -> int: """階乘階(遞迴實現)""" if n == 0: return 1 count = 0 # 從 1 個分裂出 n 個 for _ in range(n): count += factorial_recur(n - 1) return count """Driver Code""" if __name__ == "__main__": # 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢 n = 8 print("輸入資料大小 n =", n) count = constant(n) print("常數階的操作數量 =", count) count = linear(n) print("線性階的操作數量 =", count) count = array_traversal([0] * n) print("線性階(走訪陣列)的操作數量 =", count) count = quadratic(n) print("平方階的操作數量 =", count) nums = [i for i in range(n, 0, -1)] # [n, n-1, ..., 2, 1] count = bubble_sort(nums) print("平方階(泡沫排序)的操作數量 =", count) count = exponential(n) print("指數階(迴圈實現)的操作數量 =", count) count = exp_recur(n) print("指數階(遞迴實現)的操作數量 =", count) count = logarithmic(n) print("對數階(迴圈實現)的操作數量 =", count) count = log_recur(n) print("對數階(遞迴實現)的操作數量 =", count) count = linear_log_recur(n) print("線性對數階(遞迴實現)的操作數量 =", count) count = factorial_recur(n) print("階乘階(遞迴實現)的操作數量 =", count)