--- comments: true --- # 2.3   时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. **确定运行平台**,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. **评估各种计算操作所需的运行时间**,例如加法操作 `+` 需要 1 ns ,乘法操作 `*` 需要 10 ns ,打印操作 `print()` 需要 5 ns 等。 3. **统计代码中所有的计算操作**,并将所有操作的执行时间求和,从而得到运行时间。 例如在以下代码中,输入数据大小为 $n$ : === "Python" ```python title="" # 在某运行平台下 def algorithm(n: int): a = 2 # 1 ns a = a + 1 # 1 ns a = a * 2 # 10 ns # 循环 n 次 for _ in range(n): # 1 ns print(0) # 5 ns ``` === "C++" ```cpp title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ cout << 0 << endl; // 5 ns } } ``` === "Java" ```java title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ System.out.println(0); // 5 ns } } ``` === "C#" ```csharp title="" // 在某运行平台下 void Algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ Console.WriteLine(0); // 5 ns } } ``` === "Go" ```go title="" // 在某运行平台下 func algorithm(n int) { a := 2 // 1 ns a = a + 1 // 1 ns a = a * 2 // 10 ns // 循环 n 次 for i := 0; i < n; i++ { // 1 ns fmt.Println(a) // 5 ns } } ``` === "Swift" ```swift title="" // 在某运行平台下 func algorithm(n: Int) { var a = 2 // 1 ns a = a + 1 // 1 ns a = a * 2 // 10 ns // 循环 n 次 for _ in 0 ..< n { // 1 ns print(0) // 5 ns } } ``` === "JS" ```javascript title="" // 在某运行平台下 function algorithm(n) { var a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ console.log(0); // 5 ns } } ``` === "TS" ```typescript title="" // 在某运行平台下 function algorithm(n: number): void { var a: number = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ console.log(0); // 5 ns } } ``` === "Dart" ```dart title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ print(0); // 5 ns } } ``` === "Rust" ```rust title="" // 在某运行平台下 fn algorithm(n: i32) { let mut a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for _ in 0..n { // 1 ns ,每轮都要执行 i++ println!("{}", 0); // 5 ns } } ``` === "C" ```c title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ printf("%d", 0); // 5 ns } } ``` === "Kotlin" ```kotlin title="" ``` === "Zig" ```zig title="" // 在某运行平台下 fn algorithm(n: usize) void { var a: i32 = 2; // 1 ns a += 1; // 1 ns a *= 2; // 10 ns // 循环 n 次 for (0..n) |_| { // 1 ns std.debug.print("{}\n", .{0}); // 5 ns } } ``` 根据以上方法,可以得到算法的运行时间为 $(6n + 12)$ ns : $$ 1 + 1 + 10 + (1 + 5) \times n = 6n + 12 $$ 但实际上,**统计算法的运行时间既不合理也不现实**。首先,我们不希望将预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。其次,我们很难获知每种操作的运行时间,这给预估过程带来了极大的难度。 ## 2.3.1   统计时间增长趋势 时间复杂度分析统计的不是算法运行时间,**而是算法运行时间随着数据量变大时的增长趋势**。 “时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 $n$ ,给定三个算法 `A`、`B` 和 `C` : === "Python" ```python title="" # 算法 A 的时间复杂度:常数阶 def algorithm_A(n: int): print(0) # 算法 B 的时间复杂度:线性阶 def algorithm_B(n: int): for _ in range(n): print(0) # 算法 C 的时间复杂度:常数阶 def algorithm_C(n: int): for _ in range(1000000): print(0) ``` === "C++" ```cpp title="" // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { cout << 0 << endl; } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { cout << 0 << endl; } } // 算法 C 的时间复杂度:常数阶 void algorithm_C(int n) { for (int i = 0; i < 1000000; i++) { cout << 0 << endl; } } ``` === "Java" ```java title="" // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { System.out.println(0); } } // 算法 C 的时间复杂度:常数阶 void algorithm_C(int n) { for (int i = 0; i < 1000000; i++) { System.out.println(0); } } ``` === "C#" ```csharp title="" // 算法 A 的时间复杂度:常数阶 void AlgorithmA(int n) { Console.WriteLine(0); } // 算法 B 的时间复杂度:线性阶 void AlgorithmB(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // 算法 C 的时间复杂度:常数阶 void AlgorithmC(int n) { for (int i = 0; i < 1000000; i++) { Console.WriteLine(0); } } ``` === "Go" ```go title="" // 算法 A 的时间复杂度:常数阶 func algorithm_A(n int) { fmt.Println(0) } // 算法 B 的时间复杂度:线性阶 func algorithm_B(n int) { for i := 0; i < n; i++ { fmt.Println(0) } } // 算法 C 的时间复杂度:常数阶 func algorithm_C(n int) { for i := 0; i < 1000000; i++ { fmt.Println(0) } } ``` === "Swift" ```swift title="" // 算法 A 的时间复杂度:常数阶 func algorithmA(n: Int) { print(0) } // 算法 B 的时间复杂度:线性阶 func algorithmB(n: Int) { for _ in 0 ..< n { print(0) } } // 算法 C 的时间复杂度:常数阶 func algorithmC(n: Int) { for _ in 0 ..< 1_000_000 { print(0) } } ``` === "JS" ```javascript title="" // 算法 A 的时间复杂度:常数阶 function algorithm_A(n) { console.log(0); } // 算法 B 的时间复杂度:线性阶 function algorithm_B(n) { for (let i = 0; i < n; i++) { console.log(0); } } // 算法 C 的时间复杂度:常数阶 function algorithm_C(n) { for (let i = 0; i < 1000000; i++) { console.log(0); } } ``` === "TS" ```typescript title="" // 算法 A 的时间复杂度:常数阶 function algorithm_A(n: number): void { console.log(0); } // 算法 B 的时间复杂度:线性阶 function algorithm_B(n: number): void { for (let i = 0; i < n; i++) { console.log(0); } } // 算法 C 的时间复杂度:常数阶 function algorithm_C(n: number): void { for (let i = 0; i < 1000000; i++) { console.log(0); } } ``` === "Dart" ```dart title="" // 算法 A 的时间复杂度:常数阶 void algorithmA(int n) { print(0); } // 算法 B 的时间复杂度:线性阶 void algorithmB(int n) { for (int i = 0; i < n; i++) { print(0); } } // 算法 C 的时间复杂度:常数阶 void algorithmC(int n) { for (int i = 0; i < 1000000; i++) { print(0); } } ``` === "Rust" ```rust title="" // 算法 A 的时间复杂度:常数阶 fn algorithm_A(n: i32) { println!("{}", 0); } // 算法 B 的时间复杂度:线性阶 fn algorithm_B(n: i32) { for _ in 0..n { println!("{}", 0); } } // 算法 C 的时间复杂度:常数阶 fn algorithm_C(n: i32) { for _ in 0..1000000 { println!("{}", 0); } } ``` === "C" ```c title="" // 算法 A 的时间复杂度:常数阶 void algorithm_A(int n) { printf("%d", 0); } // 算法 B 的时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { printf("%d", 0); } } // 算法 C 的时间复杂度:常数阶 void algorithm_C(int n) { for (int i = 0; i < 1000000; i++) { printf("%d", 0); } } ``` === "Kotlin" ```kotlin title="" ``` === "Zig" ```zig title="" // 算法 A 的时间复杂度:常数阶 fn algorithm_A(n: usize) void { _ = n; std.debug.print("{}\n", .{0}); } // 算法 B 的时间复杂度:线性阶 fn algorithm_B(n: i32) void { for (0..n) |_| { std.debug.print("{}\n", .{0}); } } // 算法 C 的时间复杂度:常数阶 fn algorithm_C(n: i32) void { _ = n; for (0..1000000) |_| { std.debug.print("{}\n", .{0}); } } ``` 图 2-7 展示了以上三个算法函数的时间复杂度。 - 算法 `A` 只有 $1$ 个打印操作,算法运行时间不随着 $n$ 增大而增长。我们称此算法的时间复杂度为“常数阶”。 - 算法 `B` 中的打印操作需要循环 $n$ 次,算法运行时间随着 $n$ 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。 - 算法 `C` 中的打印操作需要循环 $1000000$ 次,虽然运行时间很长,但它与输入数据大小 $n$ 无关。因此 `C` 的时间复杂度和 `A` 相同,仍为“常数阶”。 ![算法 A、B 和 C 的时间增长趋势](time_complexity.assets/time_complexity_simple_example.png){ class="animation-figure" }

图 2-7   算法 A、B 和 C 的时间增长趋势

相较于直接统计算法的运行时间,时间复杂度分析有哪些特点呢? - **时间复杂度能够有效评估算法效率**。例如,算法 `B` 的运行时间呈线性增长,在 $n > 1$ 时比算法 `A` 更慢,在 $n > 1000000$ 时比算法 `C` 更慢。事实上,只要输入数据大小 $n$ 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势的含义。 - **时间复杂度的推算方法更简便**。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 - **时间复杂度也存在一定的局限性**。例如,尽管算法 `A` 和 `C` 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 `B` 的时间复杂度比 `C` 高,但在输入数据大小 $n$ 较小时,算法 `B` 明显优于算法 `C` 。在这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。 ## 2.3.2   函数渐近上界 给定一个输入大小为 $n$ 的函数: === "Python" ```python title="" def algorithm(n: int): a = 1 # +1 a = a + 1 # +1 a = a * 2 # +1 # 循环 n 次 for i in range(n): # +1 print(0) # +1 ``` === "C++" ```cpp title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) cout << 0 << endl; // +1 } } ``` === "Java" ```java title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) System.out.println(0); // +1 } } ``` === "C#" ```csharp title="" void Algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) Console.WriteLine(0); // +1 } } ``` === "Go" ```go title="" func algorithm(n int) { a := 1 // +1 a = a + 1 // +1 a = a * 2 // +1 // 循环 n 次 for i := 0; i < n; i++ { // +1 fmt.Println(a) // +1 } } ``` === "Swift" ```swift title="" func algorithm(n: Int) { var a = 1 // +1 a = a + 1 // +1 a = a * 2 // +1 // 循环 n 次 for _ in 0 ..< n { // +1 print(0) // +1 } } ``` === "JS" ```javascript title="" function algorithm(n) { var a = 1; // +1 a += 1; // +1 a *= 2; // +1 // 循环 n 次 for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++) console.log(0); // +1 } } ``` === "TS" ```typescript title="" function algorithm(n: number): void{ var a: number = 1; // +1 a += 1; // +1 a *= 2; // +1 // 循环 n 次 for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++) console.log(0); // +1 } } ``` === "Dart" ```dart title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) print(0); // +1 } } ``` === "Rust" ```rust title="" fn algorithm(n: i32) { let mut a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for _ in 0..n { // +1(每轮都执行 i ++) println!("{}", 0); // +1 } } ``` === "C" ```c title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) printf("%d", 0); // +1 } } ``` === "Kotlin" ```kotlin title="" ``` === "Zig" ```zig title="" fn algorithm(n: usize) void { var a: i32 = 1; // +1 a += 1; // +1 a *= 2; // +1 // 循环 n 次 for (0..n) |_| { // +1(每轮都执行 i ++) std.debug.print("{}\n", .{0}); // +1 } } ``` 设算法的操作数量是一个关于输入数据大小 $n$ 的函数,记为 $T(n)$ ,则以上函数的操作数量为: $$ T(n) = 3 + 2n $$ $T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号称为「大 $O$ 记号 big-$O$ notation」,表示函数 $T(n)$ 的「渐近上界 asymptotic upper bound」。 时间复杂度分析本质上是计算“操作数量 $T(n)$”的渐近上界,它具有明确的数学定义。 !!! abstract "函数渐近上界" 若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有 $T(n) \leq c \cdot f(n)$ ,则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐近上界,记为 $T(n) = O(f(n))$ 。 如图 2-8 所示,计算渐近上界就是寻找一个函数 $f(n)$ ,使得当 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别,仅相差一个常数项 $c$ 的倍数。 ![函数的渐近上界](time_complexity.assets/asymptotic_upper_bound.png){ class="animation-figure" }

图 2-8   函数的渐近上界

## 2.3.3   推算方法 渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无须担心。我们可以先掌握推算方法,在不断的实践中,就可以逐渐领悟其数学意义。 根据定义,确定 $f(n)$ 之后,我们便可得到时间复杂度 $O(f(n))$ 。那么如何确定渐近上界 $f(n)$ 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。 ### 1.   第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,**因此操作数量 $T(n)$ 中的各种系数、常数项都可以忽略**。根据此原则,可以总结出以下计数简化技巧。 1. **忽略 $T(n)$ 中的常数项**。因为它们都与 $n$ 无关,所以对时间复杂度不产生影响。 2. **省略所有系数**。例如,循环 $2n$ 次、$5n + 1$ 次等,都可以简化记为 $n$ 次,因为 $n$ 前面的系数对时间复杂度没有影响。 3. **循环嵌套时使用乘法**。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第 `1.` 点和第 `2.` 点的技巧。 给定一个函数,我们可以用上述技巧来统计操作数量: === "Python" ```python title="" def algorithm(n: int): a = 1 # +0(技巧 1) a = a + n # +0(技巧 1) # +n(技巧 2) for i in range(5 * n + 1): print(0) # +n*n(技巧 3) for i in range(2 * n): for j in range(n + 1): print(0) ``` === "C++" ```cpp title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { cout << 0 << endl; } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { cout << 0 << endl; } } } ``` === "Java" ```java title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { System.out.println(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { System.out.println(0); } } } ``` === "C#" ```csharp title="" void Algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { Console.WriteLine(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { Console.WriteLine(0); } } } ``` === "Go" ```go title="" func algorithm(n int) { a := 1 // +0(技巧 1) a = a + n // +0(技巧 1) // +n(技巧 2) for i := 0; i < 5 * n + 1; i++ { fmt.Println(0) } // +n*n(技巧 3) for i := 0; i < 2 * n; i++ { for j := 0; j < n + 1; j++ { fmt.Println(0) } } } ``` === "Swift" ```swift title="" func algorithm(n: Int) { var a = 1 // +0(技巧 1) a = a + n // +0(技巧 1) // +n(技巧 2) for _ in 0 ..< (5 * n + 1) { print(0) } // +n*n(技巧 3) for _ in 0 ..< (2 * n) { for _ in 0 ..< (n + 1) { print(0) } } } ``` === "JS" ```javascript title="" function algorithm(n) { let a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (let i = 0; i < 5 * n + 1; i++) { console.log(0); } // +n*n(技巧 3) for (let i = 0; i < 2 * n; i++) { for (let j = 0; j < n + 1; j++) { console.log(0); } } } ``` === "TS" ```typescript title="" function algorithm(n: number): void { let a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (let i = 0; i < 5 * n + 1; i++) { console.log(0); } // +n*n(技巧 3) for (let i = 0; i < 2 * n; i++) { for (let j = 0; j < n + 1; j++) { console.log(0); } } } ``` === "Dart" ```dart title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { print(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { print(0); } } } ``` === "Rust" ```rust title="" fn algorithm(n: i32) { let mut a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for i in 0..(5 * n + 1) { println!("{}", 0); } // +n*n(技巧 3) for i in 0..(2 * n) { for j in 0..(n + 1) { println!("{}", 0); } } } ``` === "C" ```c title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { printf("%d", 0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { printf("%d", 0); } } } ``` === "Kotlin" ```kotlin title="" ``` === "Zig" ```zig title="" fn algorithm(n: usize) void { var a: i32 = 1; // +0(技巧 1) a = a + @as(i32, @intCast(n)); // +0(技巧 1) // +n(技巧 2) for(0..(5 * n + 1)) |_| { std.debug.print("{}\n", .{0}); } // +n*n(技巧 3) for(0..(2 * n)) |_| { for(0..(n + 1)) |_| { std.debug.print("{}\n", .{0}); } } } ``` 以下公式展示了使用上述技巧前后的统计结果,两者推算出的时间复杂度都为 $O(n^2)$ 。 $$ \begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整统计 (-.-|||)} \newline & = 2n^2 + 7n + 3 \newline T(n) & = n^2 + n & \text{偷懒统计 (o.O)} \end{aligned} $$ ### 2.   第二步:判断渐近上界 **时间复杂度由 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以忽略。 表 2-2 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 $n$ 趋于无穷大时,这些常数变得无足轻重。

表 2-2   不同操作数量对应的时间复杂度

| 操作数量 $T(n)$ | 时间复杂度 $O(f(n))$ | | ---------------------- | -------------------- | | $100000$ | $O(1)$ | | $3n + 2$ | $O(n)$ | | $2n^2 + 3n + 2$ | $O(n^2)$ | | $n^3 + 10000n^2$ | $O(n^3)$ | | $2^n + 10000n^{10000}$ | $O(2^n)$ |
## 2.3.4   常见类型 设输入数据大小为 $n$ ,常见的时间复杂度类型如图 2-9 所示(按照从低到高的顺序排列)。 $$ \begin{aligned} O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!) \newline \text{常数阶} < \text{对数阶} < \text{线性阶} < \text{线性对数阶} < \text{平方阶} < \text{指数阶} < \text{阶乘阶} \end{aligned} $$ ![常见的时间复杂度类型](time_complexity.assets/time_complexity_common_types.png){ class="animation-figure" }

图 2-9   常见的时间复杂度类型

### 1.   常数阶 $O(1)$ {data-toc-label="常数阶"} 常数阶的操作数量与输入数据大小 $n$ 无关,即不随着 $n$ 的变化而变化。 在以下函数中,尽管操作数量 `size` 可能很大,但由于其与输入数据大小 $n$ 无关,因此时间复杂度仍为 $O(1)$ : === "Python" ```python title="time_complexity.py" def constant(n: int) -> int: """常数阶""" count = 0 size = 100000 for _ in range(size): count += 1 return count ``` === "C++" ```cpp title="time_complexity.cpp" /* 常数阶 */ int constant(int n) { int count = 0; int size = 100000; for (int i = 0; i < size; i++) count++; return count; } ``` === "Java" ```java title="time_complexity.java" /* 常数阶 */ int constant(int n) { int count = 0; int size = 100000; for (int i = 0; i < size; i++) count++; return count; } ``` === "C#" ```csharp title="time_complexity.cs" /* 常数阶 */ int Constant(int n) { int count = 0; int size = 100000; for (int i = 0; i < size; i++) count++; return count; } ``` === "Go" ```go title="time_complexity.go" /* 常数阶 */ func constant(n int) int { count := 0 size := 100000 for i := 0; i < size; i++ { count++ } return count } ``` === "Swift" ```swift title="time_complexity.swift" /* 常数阶 */ func constant(n: Int) -> Int { var count = 0 let size = 100_000 for _ in 0 ..< size { count += 1 } return count } ``` === "JS" ```javascript title="time_complexity.js" /* 常数阶 */ function constant(n) { let count = 0; const size = 100000; for (let i = 0; i < size; i++) count++; return count; } ``` === "TS" ```typescript title="time_complexity.ts" /* 常数阶 */ function constant(n: number): number { let count = 0; const size = 100000; for (let i = 0; i < size; i++) count++; return count; } ``` === "Dart" ```dart title="time_complexity.dart" /* 常数阶 */ int constant(int n) { int count = 0; int size = 100000; for (var i = 0; i < size; i++) { count++; } return count; } ``` === "Rust" ```rust title="time_complexity.rs" /* 常数阶 */ fn constant(n: i32) -> i32 { _ = n; let mut count = 0; let size = 100_000; for _ in 0..size { count += 1; } count } ``` === "C" ```c title="time_complexity.c" /* 常数阶 */ int constant(int n) { int count = 0; int size = 100000; int i = 0; for (int i = 0; i < size; i++) { count++; } return count; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 常数阶 */ fun constant(n: Int): Int { var count = 0 val size = 10_0000 for (i in 0..
全屏观看 >
### 2.   线性阶 $O(n)$ {data-toc-label="线性阶"} 线性阶的操作数量相对于输入数据大小 $n$ 以线性级别增长。线性阶通常出现在单层循环中: === "Python" ```python title="time_complexity.py" def linear(n: int) -> int: """线性阶""" count = 0 for _ in range(n): count += 1 return count ``` === "C++" ```cpp title="time_complexity.cpp" /* 线性阶 */ int linear(int n) { int count = 0; for (int i = 0; i < n; i++) count++; return count; } ``` === "Java" ```java title="time_complexity.java" /* 线性阶 */ int linear(int n) { int count = 0; for (int i = 0; i < n; i++) count++; return count; } ``` === "C#" ```csharp title="time_complexity.cs" /* 线性阶 */ int Linear(int n) { int count = 0; for (int i = 0; i < n; i++) count++; return count; } ``` === "Go" ```go title="time_complexity.go" /* 线性阶 */ func linear(n int) int { count := 0 for i := 0; i < n; i++ { count++ } return count } ``` === "Swift" ```swift title="time_complexity.swift" /* 线性阶 */ func linear(n: Int) -> Int { var count = 0 for _ in 0 ..< n { count += 1 } return count } ``` === "JS" ```javascript title="time_complexity.js" /* 线性阶 */ function linear(n) { let count = 0; for (let i = 0; i < n; i++) count++; return count; } ``` === "TS" ```typescript title="time_complexity.ts" /* 线性阶 */ function linear(n: number): number { let count = 0; for (let i = 0; i < n; i++) count++; return count; } ``` === "Dart" ```dart title="time_complexity.dart" /* 线性阶 */ int linear(int n) { int count = 0; for (var i = 0; i < n; i++) { count++; } return count; } ``` === "Rust" ```rust title="time_complexity.rs" /* 线性阶 */ fn linear(n: i32) -> i32 { let mut count = 0; for _ in 0..n { count += 1; } count } ``` === "C" ```c title="time_complexity.c" /* 线性阶 */ int linear(int n) { int count = 0; for (int i = 0; i < n; i++) { count++; } return count; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 线性阶 */ fun linear(n: Int): Int { var count = 0 // 循环次数与数组长度成正比 for (i in 0..
全屏观看 >
遍历数组和遍历链表等操作的时间复杂度均为 $O(n)$ ,其中 $n$ 为数组或链表的长度: === "Python" ```python title="time_complexity.py" def array_traversal(nums: list[int]) -> int: """线性阶(遍历数组)""" count = 0 # 循环次数与数组长度成正比 for num in nums: count += 1 return count ``` === "C++" ```cpp title="time_complexity.cpp" /* 线性阶(遍历数组) */ int arrayTraversal(vector &nums) { int count = 0; // 循环次数与数组长度成正比 for (int num : nums) { count++; } return count; } ``` === "Java" ```java title="time_complexity.java" /* 线性阶(遍历数组) */ int arrayTraversal(int[] nums) { int count = 0; // 循环次数与数组长度成正比 for (int num : nums) { count++; } return count; } ``` === "C#" ```csharp title="time_complexity.cs" /* 线性阶(遍历数组) */ int ArrayTraversal(int[] nums) { int count = 0; // 循环次数与数组长度成正比 foreach (int num in nums) { count++; } return count; } ``` === "Go" ```go title="time_complexity.go" /* 线性阶(遍历数组) */ func arrayTraversal(nums []int) int { count := 0 // 循环次数与数组长度成正比 for range nums { count++ } return count } ``` === "Swift" ```swift title="time_complexity.swift" /* 线性阶(遍历数组) */ func arrayTraversal(nums: [Int]) -> Int { var count = 0 // 循环次数与数组长度成正比 for _ in nums { count += 1 } return count } ``` === "JS" ```javascript title="time_complexity.js" /* 线性阶(遍历数组) */ function arrayTraversal(nums) { let count = 0; // 循环次数与数组长度成正比 for (let i = 0; i < nums.length; i++) { count++; } return count; } ``` === "TS" ```typescript title="time_complexity.ts" /* 线性阶(遍历数组) */ function arrayTraversal(nums: number[]): number { let count = 0; // 循环次数与数组长度成正比 for (let i = 0; i < nums.length; i++) { count++; } return count; } ``` === "Dart" ```dart title="time_complexity.dart" /* 线性阶(遍历数组) */ int arrayTraversal(List nums) { int count = 0; // 循环次数与数组长度成正比 for (var _num in nums) { count++; } return count; } ``` === "Rust" ```rust title="time_complexity.rs" /* 线性阶(遍历数组) */ fn array_traversal(nums: &[i32]) -> i32 { let mut count = 0; // 循环次数与数组长度成正比 for _ in nums { count += 1; } count } ``` === "C" ```c title="time_complexity.c" /* 线性阶(遍历数组) */ int arrayTraversal(int *nums, int n) { int count = 0; // 循环次数与数组长度成正比 for (int i = 0; i < n; i++) { count++; } return count; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 线性阶(遍历数组) */ fun arrayTraversal(nums: IntArray): Int { var count = 0 // 循环次数与数组长度成正比 for (num in nums) { count++ } return count } ``` === "Zig" ```zig title="time_complexity.zig" // 线性阶(遍历数组) fn arrayTraversal(nums: []i32) i32 { var count: i32 = 0; // 循环次数与数组长度成正比 for (nums) |_| { count += 1; } return count; } ``` ??? pythontutor "可视化运行"
全屏观看 >
值得注意的是,**输入数据大小 $n$ 需根据输入数据的类型来具体确定**。比如在第一个示例中,变量 $n$ 为输入数据大小;在第二个示例中,数组长度 $n$ 为数据大小。 ### 3.   平方阶 $O(n^2)$ {data-toc-label="平方阶"} 平方阶的操作数量相对于输入数据大小 $n$ 以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环的时间复杂度都为 $O(n)$ ,因此总体的时间复杂度为 $O(n^2)$ : === "Python" ```python title="time_complexity.py" def quadratic(n: int) -> int: """平方阶""" count = 0 # 循环次数与数据大小 n 成平方关系 for i in range(n): for j in range(n): count += 1 return count ``` === "C++" ```cpp title="time_complexity.cpp" /* 平方阶 */ int quadratic(int n) { int count = 0; // 循环次数与数据大小 n 成平方关系 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } ``` === "Java" ```java title="time_complexity.java" /* 平方阶 */ int quadratic(int n) { int count = 0; // 循环次数与数据大小 n 成平方关系 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } ``` === "C#" ```csharp title="time_complexity.cs" /* 平方阶 */ int Quadratic(int n) { int count = 0; // 循环次数与数据大小 n 成平方关系 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } ``` === "Go" ```go title="time_complexity.go" /* 平方阶 */ func quadratic(n int) int { count := 0 // 循环次数与数据大小 n 成平方关系 for i := 0; i < n; i++ { for j := 0; j < n; j++ { count++ } } return count } ``` === "Swift" ```swift title="time_complexity.swift" /* 平方阶 */ func quadratic(n: Int) -> Int { var count = 0 // 循环次数与数据大小 n 成平方关系 for _ in 0 ..< n { for _ in 0 ..< n { count += 1 } } return count } ``` === "JS" ```javascript title="time_complexity.js" /* 平方阶 */ function quadratic(n) { let count = 0; // 循环次数与数据大小 n 成平方关系 for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { count++; } } return count; } ``` === "TS" ```typescript title="time_complexity.ts" /* 平方阶 */ function quadratic(n: number): number { let count = 0; // 循环次数与数据大小 n 成平方关系 for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { count++; } } return count; } ``` === "Dart" ```dart title="time_complexity.dart" /* 平方阶 */ int quadratic(int n) { int count = 0; // 循环次数与数据大小 n 成平方关系 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } ``` === "Rust" ```rust title="time_complexity.rs" /* 平方阶 */ fn quadratic(n: i32) -> i32 { let mut count = 0; // 循环次数与数据大小 n 成平方关系 for _ in 0..n { for _ in 0..n { count += 1; } } count } ``` === "C" ```c title="time_complexity.c" /* 平方阶 */ int quadratic(int n) { int count = 0; // 循环次数与数据大小 n 成平方关系 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 平方阶 */ fun quadratic(n: Int): Int { var count = 0 // 循环次数与数据大小 n 成平方关系 for (i in 0.. 图 2-10 对比了常数阶、线性阶和平方阶三种时间复杂度。 ![常数阶、线性阶和平方阶的时间复杂度](time_complexity.assets/time_complexity_constant_linear_quadratic.png){ class="animation-figure" }

图 2-10   常数阶、线性阶和平方阶的时间复杂度

以冒泡排序为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1$、$n-2$、$\dots$、$2$、$1$ 次,平均为 $n / 2$ 次,因此时间复杂度为 $O((n - 1) n / 2) = O(n^2)$ : === "Python" ```python title="time_complexity.py" def bubble_sort(nums: list[int]) -> int: """平方阶(冒泡排序)""" count = 0 # 计数器 # 外循环:未排序区间为 [0, i] for i in range(len(nums) - 1, 0, -1): # 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for j in range(i): if nums[j] > nums[j + 1]: # 交换 nums[j] 与 nums[j + 1] tmp: int = nums[j] nums[j] = nums[j + 1] nums[j + 1] = tmp count += 3 # 元素交换包含 3 个单元操作 return count ``` === "C++" ```cpp title="time_complexity.cpp" /* 平方阶(冒泡排序) */ int bubbleSort(vector &nums) { int count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for (int i = nums.size() - 1; i > 0; i--) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } ``` === "Java" ```java title="time_complexity.java" /* 平方阶(冒泡排序) */ int bubbleSort(int[] nums) { int count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for (int i = nums.length - 1; i > 0; i--) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } ``` === "C#" ```csharp title="time_complexity.cs" /* 平方阶(冒泡排序) */ int BubbleSort(int[] nums) { int count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for (int i = nums.Length - 1; i > 0; i--) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]); count += 3; // 元素交换包含 3 个单元操作 } } } return count; } ``` === "Go" ```go title="time_complexity.go" /* 平方阶(冒泡排序) */ func bubbleSort(nums []int) int { count := 0 // 计数器 // 外循环:未排序区间为 [0, i] for i := len(nums) - 1; i > 0; i-- { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for j := 0; j < i; j++ { if nums[j] > nums[j+1] { // 交换 nums[j] 与 nums[j + 1] tmp := nums[j] nums[j] = nums[j+1] nums[j+1] = tmp count += 3 // 元素交换包含 3 个单元操作 } } } return count } ``` === "Swift" ```swift title="time_complexity.swift" /* 平方阶(冒泡排序) */ func bubbleSort(nums: inout [Int]) -> Int { var count = 0 // 计数器 // 外循环:未排序区间为 [0, i] for i in nums.indices.dropFirst().reversed() { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for j in 0 ..< i { if nums[j] > nums[j + 1] { // 交换 nums[j] 与 nums[j + 1] let tmp = nums[j] nums[j] = nums[j + 1] nums[j + 1] = tmp count += 3 // 元素交换包含 3 个单元操作 } } } return count } ``` === "JS" ```javascript title="time_complexity.js" /* 平方阶(冒泡排序) */ function bubbleSort(nums) { let count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for (let i = nums.length - 1; i > 0; i--) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (let j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] let tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } ``` === "TS" ```typescript title="time_complexity.ts" /* 平方阶(冒泡排序) */ function bubbleSort(nums: number[]): number { let count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for (let i = nums.length - 1; i > 0; i--) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (let j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] let tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } ``` === "Dart" ```dart title="time_complexity.dart" /* 平方阶(冒泡排序) */ int bubbleSort(List nums) { int count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for (var i = nums.length - 1; i > 0; i--) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (var j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } ``` === "Rust" ```rust title="time_complexity.rs" /* 平方阶(冒泡排序) */ fn bubble_sort(nums: &mut [i32]) -> i32 { let mut count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for i in (1..nums.len()).rev() { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for j in 0..i { if nums[j] > nums[j + 1] { // 交换 nums[j] 与 nums[j + 1] let tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } count } ``` === "C" ```c title="time_complexity.c" /* 平方阶(冒泡排序) */ int bubbleSort(int *nums, int n) { int count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for (int i = n - 1; i > 0; i--) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 平方阶(冒泡排序) */ fun bubbleSort(nums: IntArray): Int { var count = 0 // 外循环:未排序区间为 [0, i] for (i in nums.size - 1 downTo 1) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (j in 0.. nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] nums[j] = nums[j + 1].also { nums[j + 1] = nums[j] } count += 3 // 元素交换包含 3 个单元操作 } } } return count } ``` === "Zig" ```zig title="time_complexity.zig" // 平方阶(冒泡排序) fn bubbleSort(nums: []i32) i32 { var count: i32 = 0; // 计数器 // 外循环:未排序区间为 [0, i] var i: i32 = @as(i32, @intCast(nums.len)) - 1; while (i > 0) : (i -= 1) { var j: usize = 0; // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 while (j < i) : (j += 1) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] var tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } ``` ??? pythontutor "可视化运行"
### 4.   指数阶 $O(2^n)$ {data-toc-label="指数阶"} 生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 $1$ 个细胞,分裂一轮后变为 $2$ 个,分裂两轮后变为 $4$ 个,以此类推,分裂 $n$ 轮后有 $2^n$ 个细胞。 图 2-11 和以下代码模拟了细胞分裂的过程,时间复杂度为 $O(2^n)$ : === "Python" ```python title="time_complexity.py" def exponential(n: int) -> int: """指数阶(循环实现)""" count = 0 base = 1 # 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for _ in range(n): for _ in range(base): count += 1 base *= 2 # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count ``` === "C++" ```cpp title="time_complexity.cpp" /* 指数阶(循环实现) */ int exponential(int n) { int count = 0, base = 1; // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < base; j++) { count++; } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } ``` === "Java" ```java title="time_complexity.java" /* 指数阶(循环实现) */ int exponential(int n) { int count = 0, base = 1; // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < base; j++) { count++; } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } ``` === "C#" ```csharp title="time_complexity.cs" /* 指数阶(循环实现) */ int Exponential(int n) { int count = 0, bas = 1; // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < bas; j++) { count++; } bas *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } ``` === "Go" ```go title="time_complexity.go" /* 指数阶(循环实现)*/ func exponential(n int) int { count, base := 0, 1 // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for i := 0; i < n; i++ { for j := 0; j < base; j++ { count++ } base *= 2 } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count } ``` === "Swift" ```swift title="time_complexity.swift" /* 指数阶(循环实现) */ func exponential(n: Int) -> Int { var count = 0 var base = 1 // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for _ in 0 ..< n { for _ in 0 ..< base { count += 1 } base *= 2 } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count } ``` === "JS" ```javascript title="time_complexity.js" /* 指数阶(循环实现) */ function exponential(n) { let count = 0, base = 1; // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (let i = 0; i < n; i++) { for (let j = 0; j < base; j++) { count++; } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } ``` === "TS" ```typescript title="time_complexity.ts" /* 指数阶(循环实现) */ function exponential(n: number): number { let count = 0, base = 1; // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (let i = 0; i < n; i++) { for (let j = 0; j < base; j++) { count++; } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } ``` === "Dart" ```dart title="time_complexity.dart" /* 指数阶(循环实现) */ int exponential(int n) { int count = 0, base = 1; // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (var i = 0; i < n; i++) { for (var j = 0; j < base; j++) { count++; } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } ``` === "Rust" ```rust title="time_complexity.rs" /* 指数阶(循环实现) */ fn exponential(n: i32) -> i32 { let mut count = 0; let mut base = 1; // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for _ in 0..n { for _ in 0..base { count += 1 } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 count } ``` === "C" ```c title="time_complexity.c" /* 指数阶(循环实现) */ int exponential(int n) { int count = 0; int bas = 1; // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < bas; j++) { count++; } bas *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 指数阶(循环实现) */ fun exponential(n: Int): Int { var count = 0 // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) var base = 1 for (i in 0.. ![指数阶的时间复杂度](time_complexity.assets/time_complexity_exponential.png){ class="animation-figure" }

图 2-11   指数阶的时间复杂度

在实际算法中,指数阶常出现于递归函数中。例如在以下代码中,其递归地一分为二,经过 $n$ 次分裂后停止: === "Python" ```python title="time_complexity.py" def exp_recur(n: int) -> int: """指数阶(递归实现)""" if n == 1: return 1 return exp_recur(n - 1) + exp_recur(n - 1) + 1 ``` === "C++" ```cpp title="time_complexity.cpp" /* 指数阶(递归实现) */ int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } ``` === "Java" ```java title="time_complexity.java" /* 指数阶(递归实现) */ int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } ``` === "C#" ```csharp title="time_complexity.cs" /* 指数阶(递归实现) */ int ExpRecur(int n) { if (n == 1) return 1; return ExpRecur(n - 1) + ExpRecur(n - 1) + 1; } ``` === "Go" ```go title="time_complexity.go" /* 指数阶(递归实现)*/ func expRecur(n int) int { if n == 1 { return 1 } return expRecur(n-1) + expRecur(n-1) + 1 } ``` === "Swift" ```swift title="time_complexity.swift" /* 指数阶(递归实现) */ func expRecur(n: Int) -> Int { if n == 1 { return 1 } return expRecur(n: n - 1) + expRecur(n: n - 1) + 1 } ``` === "JS" ```javascript title="time_complexity.js" /* 指数阶(递归实现) */ function expRecur(n) { if (n === 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } ``` === "TS" ```typescript title="time_complexity.ts" /* 指数阶(递归实现) */ function expRecur(n: number): number { if (n === 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } ``` === "Dart" ```dart title="time_complexity.dart" /* 指数阶(递归实现) */ int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } ``` === "Rust" ```rust title="time_complexity.rs" /* 指数阶(递归实现) */ fn exp_recur(n: i32) -> i32 { if n == 1 { return 1; } exp_recur(n - 1) + exp_recur(n - 1) + 1 } ``` === "C" ```c title="time_complexity.c" /* 指数阶(递归实现) */ int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 指数阶(递归实现) */ fun expRecur(n: Int): Int { if (n == 1) { return 1 } return expRecur(n - 1) + expRecur(n - 1) + 1 } ``` === "Zig" ```zig title="time_complexity.zig" // 指数阶(递归实现) fn expRecur(n: i32) i32 { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } ``` ??? pythontutor "可视化运行"
指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心算法等来解决。 ### 5.   对数阶 $O(\log n)$ {data-toc-label="对数阶"} 与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 $n$ ,由于每轮缩减到一半,因此循环次数是 $\log_2 n$ ,即 $2^n$ 的反函数。 图 2-12 和以下代码模拟了“每轮缩减到一半”的过程,时间复杂度为 $O(\log_2 n)$ ,简记为 $O(\log n)$ : === "Python" ```python title="time_complexity.py" def logarithmic(n: int) -> int: """对数阶(循环实现)""" count = 0 while n > 1: n = n / 2 count += 1 return count ``` === "C++" ```cpp title="time_complexity.cpp" /* 对数阶(循环实现) */ int logarithmic(int n) { int count = 0; while (n > 1) { n = n / 2; count++; } return count; } ``` === "Java" ```java title="time_complexity.java" /* 对数阶(循环实现) */ int logarithmic(int n) { int count = 0; while (n > 1) { n = n / 2; count++; } return count; } ``` === "C#" ```csharp title="time_complexity.cs" /* 对数阶(循环实现) */ int Logarithmic(int n) { int count = 0; while (n > 1) { n /= 2; count++; } return count; } ``` === "Go" ```go title="time_complexity.go" /* 对数阶(循环实现)*/ func logarithmic(n int) int { count := 0 for n > 1 { n = n / 2 count++ } return count } ``` === "Swift" ```swift title="time_complexity.swift" /* 对数阶(循环实现) */ func logarithmic(n: Int) -> Int { var count = 0 var n = n while n > 1 { n = n / 2 count += 1 } return count } ``` === "JS" ```javascript title="time_complexity.js" /* 对数阶(循环实现) */ function logarithmic(n) { let count = 0; while (n > 1) { n = n / 2; count++; } return count; } ``` === "TS" ```typescript title="time_complexity.ts" /* 对数阶(循环实现) */ function logarithmic(n: number): number { let count = 0; while (n > 1) { n = n / 2; count++; } return count; } ``` === "Dart" ```dart title="time_complexity.dart" /* 对数阶(循环实现) */ int logarithmic(int n) { int count = 0; while (n > 1) { n = n ~/ 2; count++; } return count; } ``` === "Rust" ```rust title="time_complexity.rs" /* 对数阶(循环实现) */ fn logarithmic(mut n: i32) -> i32 { let mut count = 0; while n > 1 { n = n / 2; count += 1; } count } ``` === "C" ```c title="time_complexity.c" /* 对数阶(循环实现) */ int logarithmic(int n) { int count = 0; while (n > 1) { n = n / 2; count++; } return count; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 对数阶(循环实现) */ fun logarithmic(n: Int): Int { var n1 = n var count = 0 while (n1 > 1) { n1 /= 2 count++ } return count } ``` === "Zig" ```zig title="time_complexity.zig" // 对数阶(循环实现) fn logarithmic(n: i32) i32 { var count: i32 = 0; var n_var = n; while (n_var > 1) { n_var = n_var / 2; count +=1; } return count; } ``` ??? pythontutor "可视化运行"
![对数阶的时间复杂度](time_complexity.assets/time_complexity_logarithmic.png){ class="animation-figure" }

图 2-12   对数阶的时间复杂度

与指数阶类似,对数阶也常出现于递归函数中。以下代码形成了一棵高度为 $\log_2 n$ 的递归树: === "Python" ```python title="time_complexity.py" def log_recur(n: int) -> int: """对数阶(递归实现)""" if n <= 1: return 0 return log_recur(n / 2) + 1 ``` === "C++" ```cpp title="time_complexity.cpp" /* 对数阶(递归实现) */ int logRecur(int n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } ``` === "Java" ```java title="time_complexity.java" /* 对数阶(递归实现) */ int logRecur(int n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } ``` === "C#" ```csharp title="time_complexity.cs" /* 对数阶(递归实现) */ int LogRecur(int n) { if (n <= 1) return 0; return LogRecur(n / 2) + 1; } ``` === "Go" ```go title="time_complexity.go" /* 对数阶(递归实现)*/ func logRecur(n int) int { if n <= 1 { return 0 } return logRecur(n/2) + 1 } ``` === "Swift" ```swift title="time_complexity.swift" /* 对数阶(递归实现) */ func logRecur(n: Int) -> Int { if n <= 1 { return 0 } return logRecur(n: n / 2) + 1 } ``` === "JS" ```javascript title="time_complexity.js" /* 对数阶(递归实现) */ function logRecur(n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } ``` === "TS" ```typescript title="time_complexity.ts" /* 对数阶(递归实现) */ function logRecur(n: number): number { if (n <= 1) return 0; return logRecur(n / 2) + 1; } ``` === "Dart" ```dart title="time_complexity.dart" /* 对数阶(递归实现) */ int logRecur(int n) { if (n <= 1) return 0; return logRecur(n ~/ 2) + 1; } ``` === "Rust" ```rust title="time_complexity.rs" /* 对数阶(递归实现) */ fn log_recur(n: i32) -> i32 { if n <= 1 { return 0; } log_recur(n / 2) + 1 } ``` === "C" ```c title="time_complexity.c" /* 对数阶(递归实现) */ int logRecur(int n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 对数阶(递归实现) */ fun logRecur(n: Int): Int { if (n <= 1) return 0 return logRecur(n / 2) + 1 } ``` === "Zig" ```zig title="time_complexity.zig" // 对数阶(递归实现) fn logRecur(n: i32) i32 { if (n <= 1) return 0; return logRecur(n / 2) + 1; } ``` ??? pythontutor "可视化运行"
对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是仅次于常数阶的理想的时间复杂度。 !!! tip "$O(\log n)$ 的底数是多少?" 准确来说,“一分为 $m$”对应的时间复杂度是 $O(\log_m n)$ 。而通过对数换底公式,我们可以得到具有不同底数、相等的时间复杂度: $$ O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n) $$ 也就是说,底数 $m$ 可以在不影响复杂度的前提下转换。因此我们通常会省略底数 $m$ ,将对数阶直接记为 $O(\log n)$ 。 ### 6.   线性对数阶 $O(n \log n)$ {data-toc-label="线性对数阶"} 线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。相关代码如下: === "Python" ```python title="time_complexity.py" def linear_log_recur(n: int) -> int: """线性对数阶""" if n <= 1: return 1 count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2) for _ in range(n): count += 1 return count ``` === "C++" ```cpp title="time_complexity.cpp" /* 线性对数阶 */ int linearLogRecur(int n) { if (n <= 1) return 1; int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } ``` === "Java" ```java title="time_complexity.java" /* 线性对数阶 */ int linearLogRecur(int n) { if (n <= 1) return 1; int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } ``` === "C#" ```csharp title="time_complexity.cs" /* 线性对数阶 */ int LinearLogRecur(int n) { if (n <= 1) return 1; int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } ``` === "Go" ```go title="time_complexity.go" /* 线性对数阶 */ func linearLogRecur(n int) int { if n <= 1 { return 1 } count := linearLogRecur(n/2) + linearLogRecur(n/2) for i := 0; i < n; i++ { count++ } return count } ``` === "Swift" ```swift title="time_complexity.swift" /* 线性对数阶 */ func linearLogRecur(n: Int) -> Int { if n <= 1 { return 1 } var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2) for _ in stride(from: 0, to: n, by: 1) { count += 1 } return count } ``` === "JS" ```javascript title="time_complexity.js" /* 线性对数阶 */ function linearLogRecur(n) { if (n <= 1) return 1; let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (let i = 0; i < n; i++) { count++; } return count; } ``` === "TS" ```typescript title="time_complexity.ts" /* 线性对数阶 */ function linearLogRecur(n: number): number { if (n <= 1) return 1; let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (let i = 0; i < n; i++) { count++; } return count; } ``` === "Dart" ```dart title="time_complexity.dart" /* 线性对数阶 */ int linearLogRecur(int n) { if (n <= 1) return 1; int count = linearLogRecur(n ~/ 2) + linearLogRecur(n ~/ 2); for (var i = 0; i < n; i++) { count++; } return count; } ``` === "Rust" ```rust title="time_complexity.rs" /* 线性对数阶 */ fn linear_log_recur(n: i32) -> i32 { if n <= 1 { return 1; } let mut count = linear_log_recur(n / 2) + linear_log_recur(n / 2); for _ in 0..n as i32 { count += 1; } return count; } ``` === "C" ```c title="time_complexity.c" /* 线性对数阶 */ int linearLogRecur(int n) { if (n <= 1) return 1; int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 线性对数阶 */ fun linearLogRecur(n: Int): Int { if (n <= 1) return 1 var count = linearLogRecur(n / 2) + linearLogRecur(n / 2) for (i in 0.. 图 2-13 展示了线性对数阶的生成方式。二叉树的每一层的操作总数都为 $n$ ,树共有 $\log_2 n + 1$ 层,因此时间复杂度为 $O(n \log n)$ 。 ![线性对数阶的时间复杂度](time_complexity.assets/time_complexity_logarithmic_linear.png){ class="animation-figure" }

图 2-13   线性对数阶的时间复杂度

主流排序算法的时间复杂度通常为 $O(n \log n)$ ,例如快速排序、归并排序、堆排序等。 ### 7.   阶乘阶 $O(n!)$ {data-toc-label="阶乘阶"} 阶乘阶对应数学上的“全排列”问题。给定 $n$ 个互不重复的元素,求其所有可能的排列方案,方案数量为: $$ n! = n \times (n - 1) \times (n - 2) \times \dots \times 2 \times 1 $$ 阶乘通常使用递归实现。如图 2-14 和以下代码所示,第一层分裂出 $n$ 个,第二层分裂出 $n - 1$ 个,以此类推,直至第 $n$ 层时停止分裂: === "Python" ```python title="time_complexity.py" def factorial_recur(n: int) -> int: """阶乘阶(递归实现)""" if n == 0: return 1 count = 0 # 从 1 个分裂出 n 个 for _ in range(n): count += factorial_recur(n - 1) return count ``` === "C++" ```cpp title="time_complexity.cpp" /* 阶乘阶(递归实现) */ int factorialRecur(int n) { if (n == 0) return 1; int count = 0; // 从 1 个分裂出 n 个 for (int i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } ``` === "Java" ```java title="time_complexity.java" /* 阶乘阶(递归实现) */ int factorialRecur(int n) { if (n == 0) return 1; int count = 0; // 从 1 个分裂出 n 个 for (int i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } ``` === "C#" ```csharp title="time_complexity.cs" /* 阶乘阶(递归实现) */ int FactorialRecur(int n) { if (n == 0) return 1; int count = 0; // 从 1 个分裂出 n 个 for (int i = 0; i < n; i++) { count += FactorialRecur(n - 1); } return count; } ``` === "Go" ```go title="time_complexity.go" /* 阶乘阶(递归实现) */ func factorialRecur(n int) int { if n == 0 { return 1 } count := 0 // 从 1 个分裂出 n 个 for i := 0; i < n; i++ { count += factorialRecur(n - 1) } return count } ``` === "Swift" ```swift title="time_complexity.swift" /* 阶乘阶(递归实现) */ func factorialRecur(n: Int) -> Int { if n == 0 { return 1 } var count = 0 // 从 1 个分裂出 n 个 for _ in 0 ..< n { count += factorialRecur(n: n - 1) } return count } ``` === "JS" ```javascript title="time_complexity.js" /* 阶乘阶(递归实现) */ function factorialRecur(n) { if (n === 0) return 1; let count = 0; // 从 1 个分裂出 n 个 for (let i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } ``` === "TS" ```typescript title="time_complexity.ts" /* 阶乘阶(递归实现) */ function factorialRecur(n: number): number { if (n === 0) return 1; let count = 0; // 从 1 个分裂出 n 个 for (let i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } ``` === "Dart" ```dart title="time_complexity.dart" /* 阶乘阶(递归实现) */ int factorialRecur(int n) { if (n == 0) return 1; int count = 0; // 从 1 个分裂出 n 个 for (var i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } ``` === "Rust" ```rust title="time_complexity.rs" /* 阶乘阶(递归实现) */ fn factorial_recur(n: i32) -> i32 { if n == 0 { return 1; } let mut count = 0; // 从 1 个分裂出 n 个 for _ in 0..n { count += factorial_recur(n - 1); } count } ``` === "C" ```c title="time_complexity.c" /* 阶乘阶(递归实现) */ int factorialRecur(int n) { if (n == 0) return 1; int count = 0; for (int i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } ``` === "Kotlin" ```kotlin title="time_complexity.kt" /* 阶乘阶(递归实现) */ fun factorialRecur(n: Int): Int { if (n == 0) return 1 var count = 0 // 从 1 个分裂出 n 个 for (i in 0.. ![阶乘阶的时间复杂度](time_complexity.assets/time_complexity_factorial.png){ class="animation-figure" }

图 2-14   阶乘阶的时间复杂度

请注意,因为当 $n \geq 4$ 时恒有 $n! > 2^n$ ,所以阶乘阶比指数阶增长得更快,在 $n$ 较大时也是不可接受的。 ## 2.3.5   最差、最佳、平均时间复杂度 **算法的时间效率往往不是固定的,而是与输入数据的分布有关**。假设输入一个长度为 $n$ 的数组 `nums` ,其中 `nums` 由从 $1$ 至 $n$ 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 $1$ 的索引。我们可以得出以下结论。 - 当 `nums = [?, ?, ..., 1]` ,即当末尾元素是 $1$ 时,需要完整遍历数组,**达到最差时间复杂度 $O(n)$** 。 - 当 `nums = [1, ?, ?, ...]` ,即当首个元素为 $1$ 时,无论数组多长都不需要继续遍历,**达到最佳时间复杂度 $\Omega(1)$** 。 “最差时间复杂度”对应函数渐近上界,使用大 $O$ 记号表示。相应地,“最佳时间复杂度”对应函数渐近下界,用 $\Omega$ 记号表示: === "Python" ```python title="worst_best_time_complexity.py" def random_numbers(n: int) -> list[int]: """生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱""" # 生成数组 nums =: 1, 2, 3, ..., n nums = [i for i in range(1, n + 1)] # 随机打乱数组元素 random.shuffle(nums) return nums def find_one(nums: list[int]) -> int: """查找数组 nums 中数字 1 所在索引""" for i in range(len(nums)): # 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) # 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if nums[i] == 1: return i return -1 ``` === "C++" ```cpp title="worst_best_time_complexity.cpp" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ vector randomNumbers(int n) { vector nums(n); // 生成数组 nums = { 1, 2, 3, ..., n } for (int i = 0; i < n; i++) { nums[i] = i + 1; } // 使用系统时间生成随机种子 unsigned seed = chrono::system_clock::now().time_since_epoch().count(); // 随机打乱数组元素 shuffle(nums.begin(), nums.end(), default_random_engine(seed)); return nums; } /* 查找数组 nums 中数字 1 所在索引 */ int findOne(vector &nums) { for (int i = 0; i < nums.size(); i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if (nums[i] == 1) return i; } return -1; } ``` === "Java" ```java title="worst_best_time_complexity.java" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ int[] randomNumbers(int n) { Integer[] nums = new Integer[n]; // 生成数组 nums = { 1, 2, 3, ..., n } for (int i = 0; i < n; i++) { nums[i] = i + 1; } // 随机打乱数组元素 Collections.shuffle(Arrays.asList(nums)); // Integer[] -> int[] int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nums[i]; } return res; } /* 查找数组 nums 中数字 1 所在索引 */ int findOne(int[] nums) { for (int i = 0; i < nums.length; i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if (nums[i] == 1) return i; } return -1; } ``` === "C#" ```csharp title="worst_best_time_complexity.cs" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ int[] RandomNumbers(int n) { int[] nums = new int[n]; // 生成数组 nums = { 1, 2, 3, ..., n } for (int i = 0; i < n; i++) { nums[i] = i + 1; } // 随机打乱数组元素 for (int i = 0; i < nums.Length; i++) { int index = new Random().Next(i, nums.Length); (nums[i], nums[index]) = (nums[index], nums[i]); } return nums; } /* 查找数组 nums 中数字 1 所在索引 */ int FindOne(int[] nums) { for (int i = 0; i < nums.Length; i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if (nums[i] == 1) return i; } return -1; } ``` === "Go" ```go title="worst_best_time_complexity.go" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ func randomNumbers(n int) []int { nums := make([]int, n) // 生成数组 nums = { 1, 2, 3, ..., n } for i := 0; i < n; i++ { nums[i] = i + 1 } // 随机打乱数组元素 rand.Shuffle(len(nums), func(i, j int) { nums[i], nums[j] = nums[j], nums[i] }) return nums } /* 查找数组 nums 中数字 1 所在索引 */ func findOne(nums []int) int { for i := 0; i < len(nums); i++ { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if nums[i] == 1 { return i } } return -1 } ``` === "Swift" ```swift title="worst_best_time_complexity.swift" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ func randomNumbers(n: Int) -> [Int] { // 生成数组 nums = { 1, 2, 3, ..., n } var nums = Array(1 ... n) // 随机打乱数组元素 nums.shuffle() return nums } /* 查找数组 nums 中数字 1 所在索引 */ func findOne(nums: [Int]) -> Int { for i in nums.indices { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if nums[i] == 1 { return i } } return -1 } ``` === "JS" ```javascript title="worst_best_time_complexity.js" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ function randomNumbers(n) { const nums = Array(n); // 生成数组 nums = { 1, 2, 3, ..., n } for (let i = 0; i < n; i++) { nums[i] = i + 1; } // 随机打乱数组元素 for (let i = 0; i < n; i++) { const r = Math.floor(Math.random() * (i + 1)); const temp = nums[i]; nums[i] = nums[r]; nums[r] = temp; } return nums; } /* 查找数组 nums 中数字 1 所在索引 */ function findOne(nums) { for (let i = 0; i < nums.length; i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if (nums[i] === 1) { return i; } } return -1; } ``` === "TS" ```typescript title="worst_best_time_complexity.ts" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ function randomNumbers(n: number): number[] { const nums = Array(n); // 生成数组 nums = { 1, 2, 3, ..., n } for (let i = 0; i < n; i++) { nums[i] = i + 1; } // 随机打乱数组元素 for (let i = 0; i < n; i++) { const r = Math.floor(Math.random() * (i + 1)); const temp = nums[i]; nums[i] = nums[r]; nums[r] = temp; } return nums; } /* 查找数组 nums 中数字 1 所在索引 */ function findOne(nums: number[]): number { for (let i = 0; i < nums.length; i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if (nums[i] === 1) { return i; } } return -1; } ``` === "Dart" ```dart title="worst_best_time_complexity.dart" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ List randomNumbers(int n) { final nums = List.filled(n, 0); // 生成数组 nums = { 1, 2, 3, ..., n } for (var i = 0; i < n; i++) { nums[i] = i + 1; } // 随机打乱数组元素 nums.shuffle(); return nums; } /* 查找数组 nums 中数字 1 所在索引 */ int findOne(List nums) { for (var i = 0; i < nums.length; i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if (nums[i] == 1) return i; } return -1; } ``` === "Rust" ```rust title="worst_best_time_complexity.rs" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ fn random_numbers(n: i32) -> Vec { // 生成数组 nums = { 1, 2, 3, ..., n } let mut nums = (1..=n).collect::>(); // 随机打乱数组元素 nums.shuffle(&mut thread_rng()); nums } /* 查找数组 nums 中数字 1 所在索引 */ fn find_one(nums: &[i32]) -> Option { for i in 0..nums.len() { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if nums[i] == 1 { return Some(i); } } None } ``` === "C" ```c title="worst_best_time_complexity.c" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ int *randomNumbers(int n) { // 分配堆区内存(创建一维可变长数组:数组中元素数量为 n ,元素类型为 int ) int *nums = (int *)malloc(n * sizeof(int)); // 生成数组 nums = { 1, 2, 3, ..., n } for (int i = 0; i < n; i++) { nums[i] = i + 1; } // 随机打乱数组元素 for (int i = n - 1; i > 0; i--) { int j = rand() % (i + 1); int temp = nums[i]; nums[i] = nums[j]; nums[j] = temp; } return nums; } /* 查找数组 nums 中数字 1 所在索引 */ int findOne(int *nums, int n) { for (int i = 0; i < n; i++) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if (nums[i] == 1) return i; } return -1; } ``` === "Kotlin" ```kotlin title="worst_best_time_complexity.kt" /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ fun randomNumbers(n: Int): Array { val nums = IntArray(n) // 生成数组 nums = { 1, 2, 3, ..., n } for (i in 0.. int[] val res = arrayOfNulls(n) for (i in 0..): Int { for (i in nums.indices) { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if (nums[i] == 1) return i } return -1 } ``` === "Zig" ```zig title="worst_best_time_complexity.zig" // 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 fn randomNumbers(comptime n: usize) [n]i32 { var nums: [n]i32 = undefined; // 生成数组 nums = { 1, 2, 3, ..., n } for (&nums, 0..) |*num, i| { num.* = @as(i32, @intCast(i)) + 1; } // 随机打乱数组元素 const rand = std.crypto.random; rand.shuffle(i32, &nums); return nums; } // 查找数组 nums 中数字 1 所在索引 fn findOne(nums: []i32) i32 { for (nums, 0..) |num, i| { // 当元素 1 在数组头部时,达到最佳时间复杂度 O(1) // 当元素 1 在数组尾部时,达到最差时间复杂度 O(n) if (num == 1) return @intCast(i); } return -1; } ``` ??? pythontutor "可视化运行"
值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。**而最差时间复杂度更为实用,因为它给出了一个效率安全值**,让我们可以放心地使用算法。 从上述示例可以看出,最差时间复杂度和最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,**平均时间复杂度可以体现算法在随机输入数据下的运行效率**,用 $\Theta$ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 $1$ 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 $n / 2$ ,平均时间复杂度为 $\Theta(n / 2) = \Theta(n)$ 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。 !!! question "为什么很少看到 $\Theta$ 符号?" 可能由于 $O$ 符号过于朗朗上口,因此我们常常使用它来表示平均时间复杂度。但从严格意义上讲,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 $O(n)$”的表述,请将其直接理解为 $\Theta(n)$ 。