# 分数背包问题 !!! question 给定 $n$ 个物品,第 $i$ 个物品的重量为 $wgt[i-1]$ 、价值为 $val[i-1]$ ,和一个容量为 $cap$ 的背包。每个物品只能选择一次,**但可以选择物品的一部分,价值根据选择的重量比例计算**,问在不超过背包容量下背包中物品的最大价值。 ![分数背包问题的示例数据](fractional_knapsack_problem.assets/fractional_knapsack_example.png) 分数背包和 0-1 背包整体上非常相似,状态包含当前物品 $i$ 和容量 $c$ ,目标是求不超过背包容量下的最大价值。 不同点在于,本题允许只选择物品的一部分。如下图所示,**我们可以对物品任意地进行切分,并按照重量比例来计算物品价值**。 1. 对于物品 $i$ ,它在单位重量下的价值为 $val[i-1] / wgt[i-1]$ ,简称为单位价值。 2. 假设放入一部分物品 $i$ ,重量为 $w$ ,则背包增加的价值为 $w \times val[i-1] / wgt[i-1]$ 。 ![物品在单位重量下的价值](fractional_knapsack_problem.assets/fractional_knapsack_unit_value.png) ### 贪心策略确定 最大化背包内物品总价值,**本质上是要最大化单位重量下的物品价值**。由此便可推出下图所示的贪心策略: 1. 将物品按照单位价值从高到低进行排序。 2. 遍历所有物品,**每轮贪心地选择单位价值最高的物品**。 3. 若剩余背包容量不足,则使用当前物品的一部分填满背包即可。 ![分数背包的贪心策略](fractional_knapsack_problem.assets/fractional_knapsack_greedy_strategy.png) ### 代码实现 我们建立了一个物品类 `Item` ,以便将物品按照单位价值进行排序。循环进行贪心选择,当背包已满时跳出并返回解。 === "Java" ```java title="fractional_knapsack.java" [class]{Item}-[func]{} [class]{fractional_knapsack}-[func]{fractionalKnapsack} ``` === "C++" ```cpp title="fractional_knapsack.cpp" [class]{Item}-[func]{} [class]{}-[func]{fractionalKnapsack} ``` === "Python" ```python title="fractional_knapsack.py" [class]{Item}-[func]{} [class]{}-[func]{fractional_knapsack} ``` === "Go" ```go title="fractional_knapsack.go" [class]{Item}-[func]{} [class]{}-[func]{fractionalKnapsack} ``` === "JS" ```javascript title="fractional_knapsack.js" [class]{Item}-[func]{} [class]{}-[func]{fractionalKnapsack} ``` === "TS" ```typescript title="fractional_knapsack.ts" [class]{Item}-[func]{} [class]{}-[func]{fractionalKnapsack} ``` === "C" ```c title="fractional_knapsack.c" [class]{Item}-[func]{} [class]{}-[func]{fractionalKnapsack} ``` === "C#" ```csharp title="fractional_knapsack.cs" [class]{Item}-[func]{} [class]{fractional_knapsack}-[func]{fractionalKnapsack} ``` === "Swift" ```swift title="fractional_knapsack.swift" [class]{Item}-[func]{} [class]{}-[func]{fractionalKnapsack} ``` === "Zig" ```zig title="fractional_knapsack.zig" [class]{Item}-[func]{} [class]{}-[func]{fractionalKnapsack} ``` === "Dart" ```dart title="fractional_knapsack.dart" [class]{Item}-[func]{} [class]{}-[func]{fractionalKnapsack} ``` === "Rust" ```rust title="fractional_knapsack.rs" [class]{Item}-[func]{} [class]{}-[func]{fractional_knapsack} ``` 最差情况下,需要遍历整个物品列表,**因此时间复杂度为 $O(n)$** ,其中 $n$ 为物品数量。 由于初始化了一个 `Item` 对象列表,**因此空间复杂度为 $O(n)$** 。 ### 正确性证明 采用反证法。假设物品 $x$ 是单位价值最高的物品,使用某算法求得最大价值为 `res` ,但该解中不包含物品 $x$ 。 现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 $x$ 。由于物品 $x$ 的单位价值最高,因此替换后的总价值一定大于 `res` 。**这与 `res` 是最优解矛盾,说明最优解中必须包含物品 $x$** 。 对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,**单位价值更大的物品总是更优选择**,这说明贪心策略是有效的。 如下图所示,如果将物品重量和物品单位价值分别看作一个 2D 图表的横轴和纵轴,则分数背包问题可被转化为“求在有限横轴区间下的最大围成面积”。这个类比可以帮助我们从几何角度理解贪心策略的有效性。 ![分数背包问题的几何表示](fractional_knapsack_problem.assets/fractional_knapsack_area_chart.png)