7.4. AVL 树 *¶
在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 \(O(\log n)\) 劣化至 \(O(n)\) 。
如下图所示,执行两步删除结点后,该二叉搜索树就会退化为链表。
Fig. AVL 树在删除结点后发生退化
再比如,在以下完美二叉树中插入两个结点后,树严重向左偏斜,查找操作的时间复杂度也随之发生劣化。
Fig. AVL 树在插入结点后发生退化
G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。论文中描述了一系列操作,使得在不断添加与删除结点后,AVL 树仍然不会发生退化,进而使得各种操作的时间复杂度均能保持在 \(O(\log n)\) 级别。
换言之,在频繁增删查改的使用场景中,AVL 树可始终保持很高的数据增删查改效率,具有很好的应用价值。
7.4.1. AVL 树常见术语¶
「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质,因此又被称为「平衡二叉搜索树」。
结点高度¶
在 AVL 树的操作中,需要获取结点「高度 Height」,所以给 AVL 树的结点类添加 height
变量。
class TreeNode {
val; // 结点值
height; //结点高度
left; // 左子结点指针
right; // 右子结点指针
constructor(val, left, right, height) {
this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
}
}
class TreeNode {
val: number; // 结点值
height: number; // 结点高度
left: TreeNode | null; // 左子结点指针
right: TreeNode | null; // 右子结点指针
constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {
this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
}
}
「结点高度」是最远叶结点到该结点的距离,即走过的「边」的数量。需要特别注意,叶结点的高度为 0 ,空结点的高度为 -1。我们封装两个工具函数,分别用于获取与更新结点的高度。
def height(self, node: TreeNode | None) -> int:
""" 获取结点高度 """
# 空结点高度为 -1 ,叶结点高度为 0
if node is not None:
return node.height
return -1
def __update_height(self, node: TreeNode | None):
""" 更新结点高度 """
# 结点高度等于最高子树高度 + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
/* 获取结点高度 */
func (t *aVLTree) height(node *TreeNode) int {
// 空结点高度为 -1 ,叶结点高度为 0
if node != nil {
return node.Height
}
return -1
}
/* 更新结点高度 */
func (t *aVLTree) updateHeight(node *TreeNode) {
lh := t.height(node.Left)
rh := t.height(node.Right)
// 结点高度等于最高子树高度 + 1
if lh > rh {
node.Height = lh + 1
} else {
node.Height = rh + 1
}
}
// 获取结点高度
fn height(self: *Self, node: ?*inc.TreeNode(T)) i32 {
_ = self;
// 空结点高度为 -1 ,叶结点高度为 0
return if (node == null) -1 else node.?.height;
}
// 更新结点高度
fn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void {
// 结点高度等于最高子树高度 + 1
node.?.height = std.math.max(self.height(node.?.left), self.height(node.?.right)) + 1;
}
结点平衡因子¶
结点的「平衡因子 Balance Factor」是 结点的左子树高度减去右子树高度,并定义空结点的平衡因子为 0 。同样地,我们将获取结点平衡因子封装成函数,以便后续使用。
Note
设平衡因子为 \(f\) ,则一棵 AVL 树的任意结点的平衡因子皆满足 \(-1 \le f \le 1\) 。
7.4.2. AVL 树旋转¶
AVL 树的独特之处在于「旋转 Rotation」的操作,其可 在不影响二叉树中序遍历序列的前提下,使失衡结点重新恢复平衡。换言之,旋转操作既可以使树保持为「二叉搜索树」,也可以使树重新恢复为「平衡二叉树」。
我们将平衡因子的绝对值 \(> 1\) 的结点称为「失衡结点」。根据结点的失衡情况,旋转操作分为 右旋、左旋、先右旋后左旋、先左旋后右旋,接下来我们来一起来看看它们是如何操作的。
Case 1 - 右旋¶
如下图所示(结点下方为「平衡因子」),从底至顶看,二叉树中首个失衡结点是 结点 3。我们聚焦在以该失衡结点为根结点的子树上,将该结点记为 node
,将其左子结点记为 child
,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。
进而,如果结点 child
本身有右子结点(记为 grandChild
),则需要在「右旋」中添加一步:将 grandChild
作为 node
的左子结点。
Fig. 有 grandChild 的右旋操作
“向右旋转”是一种形象化的说法,实际需要通过修改结点指针实现,代码如下所示。
// 右旋操作
fn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
var child = node.?.left;
var grandChild = child.?.right;
// 以 child 为原点,将 node 向右旋转
child.?.right = node;
node.?.left = grandChild;
// 更新结点高度
self.updateHeight(node);
self.updateHeight(child);
// 返回旋转后子树的根结点
return child;
}
Case 2 - 左旋¶
类似地,如果将取上述失衡二叉树的“镜像”,那么则需要「左旋」操作。
Fig. 左旋操作
同理,若结点 child
本身有左子结点(记为 grandChild
),则需要在「左旋」中添加一步:将 grandChild
作为 node
的右子结点。
Fig. 有 grandChild 的左旋操作
观察发现,「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的。根据对称性,我们可以很方便地从「右旋」推导出「左旋」。具体地,只需将「右旋」代码中的把所有的 left
替换为 right
、所有的 right
替换为 left
,即可得到「左旋」代码。
// 左旋操作
fn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
var child = node.?.right;
var grandChild = child.?.left;
// 以 child 为原点,将 node 向左旋转
child.?.left = node;
node.?.right = grandChild;
// 更新结点高度
self.updateHeight(node);
self.updateHeight(child);
// 返回旋转后子树的根结点
return child;
}
Case 3 - 先左后右¶
对于下图的失衡结点 3 ,单一使用左旋或右旋都无法使子树恢复平衡,此时需要「先左旋后右旋」,即先对 child
执行「左旋」,再对 node
执行「右旋」。
Fig. 先左旋后右旋
Case 4 - 先右后左¶
同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 child
执行「右旋」,然后对 node
执行「左旋」。
Fig. 先右旋后左旋
旋转的选择¶
下图描述的四种失衡情况与上述 Cases 逐个对应,分别需采用 右旋、左旋、先右后左、先左后右 的旋转操作。
Fig. AVL 树的四种旋转情况
具体地,在代码中使用 失衡结点的平衡因子、较高一侧子结点的平衡因子 来确定失衡结点属于上图中的哪种情况。
失衡结点的平衡因子 | 子结点的平衡因子 | 应采用的旋转方法 |
---|---|---|
\(>0\) (即左偏树) | \(\geq 0\) | 右旋 |
\(>0\) (即左偏树) | \(<0\) | 先左旋后右旋 |
\(<0\) (即右偏树) | \(\leq 0\) | 左旋 |
\(<0\) (即右偏树) | \(>0\) | 先右旋后左旋 |
为方便使用,我们将旋转操作封装成一个函数。至此,我们可以使用此函数来旋转各种失衡情况,使失衡结点重新恢复平衡。
/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode rotate(TreeNode node) {
// 获取结点 node 的平衡因子
int balanceFactor = balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (balanceFactor(node.left) >= 0) {
// 右旋
return rightRotate(node);
} else {
// 先左旋后右旋
node.left = leftRotate(node.left);
return rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (balanceFactor(node.right) <= 0) {
// 左旋
return leftRotate(node);
} else {
// 先右旋后左旋
node.right = rightRotate(node.right);
return leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode* rotate(TreeNode* node) {
// 获取结点 node 的平衡因子
int _balanceFactor = balanceFactor(node);
// 左偏树
if (_balanceFactor > 1) {
if (balanceFactor(node->left) >= 0) {
// 右旋
return rightRotate(node);
} else {
// 先左旋后右旋
node->left = leftRotate(node->left);
return rightRotate(node);
}
}
// 右偏树
if (_balanceFactor < -1) {
if (balanceFactor(node->right) <= 0) {
// 左旋
return leftRotate(node);
} else {
// 先右旋后左旋
node->right = rightRotate(node->right);
return leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
def __rotate(self, node: TreeNode | None) -> TreeNode | None:
""" 执行旋转操作,使该子树重新恢复平衡 """
# 获取结点 node 的平衡因子
balance_factor = self.balance_factor(node)
# 左偏树
if balance_factor > 1:
if self.balance_factor(node.left) >= 0:
# 右旋
return self.__right_rotate(node)
else:
# 先左旋后右旋
node.left = self.__left_rotate(node.left)
return self.__right_rotate(node)
# 右偏树
elif balance_factor < -1:
if self.balance_factor(node.right) <= 0:
# 左旋
return self.__left_rotate(node)
else:
# 先右旋后左旋
node.right = self.__right_rotate(node.right)
return self.__left_rotate(node)
# 平衡树,无需旋转,直接返回
return node
/* 执行旋转操作,使该子树重新恢复平衡 */
func (t *aVLTree) rotate(node *TreeNode) *TreeNode {
// 获取结点 node 的平衡因子
// Go 推荐短变量,这里 bf 指代 t.balanceFactor
bf := t.balanceFactor(node)
// 左偏树
if bf > 1 {
if t.balanceFactor(node.Left) >= 0 {
// 右旋
return t.rightRotate(node)
} else {
// 先左旋后右旋
node.Left = t.leftRotate(node.Left)
return t.rightRotate(node)
}
}
// 右偏树
if bf < -1 {
if t.balanceFactor(node.Right) <= 0 {
// 左旋
return t.leftRotate(node)
} else {
// 先右旋后左旋
node.Right = t.rightRotate(node.Right)
return t.leftRotate(node)
}
}
// 平衡树,无需旋转,直接返回
return node
}
/* 执行旋转操作,使该子树重新恢复平衡 */
#rotate(node) {
// 获取结点 node 的平衡因子
const balanceFactor = this.balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) {
// 右旋
return this.#rightRotate(node);
} else {
// 先左旋后右旋
node.left = this.#leftRotate(node.left);
return this.#rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (this.balanceFactor(node.right) <= 0) {
// 左旋
return this.#leftRotate(node);
} else {
// 先右旋后左旋
node.right = this.#rightRotate(node.right);
return this.#leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
/* 执行旋转操作,使该子树重新恢复平衡 */
rotate(node: TreeNode): TreeNode {
// 获取结点 node 的平衡因子
const balanceFactor = this.balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) {
// 右旋
return this.rightRotate(node);
} else {
// 先左旋后右旋
node.left = this.leftRotate(node.left);
return this.rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (this.balanceFactor(node.right) <= 0) {
// 左旋
return this.leftRotate(node);
} else {
// 先右旋后左旋
node.right = this.rightRotate(node.right);
return this.leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode? rotate(TreeNode? node)
{
// 获取结点 node 的平衡因子
int balanceFactorInt = balanceFactor(node);
// 左偏树
if (balanceFactorInt > 1)
{
if (balanceFactor(node.left) >= 0)
{
// 右旋
return rightRotate(node);
}
else
{
// 先左旋后右旋
node.left = leftRotate(node?.left);
return rightRotate(node);
}
}
// 右偏树
if (balanceFactorInt < -1)
{
if (balanceFactor(node.right) <= 0)
{
// 左旋
return leftRotate(node);
}
else
{
// 先右旋后左旋
node.right = rightRotate(node?.right);
return leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
/* 执行旋转操作,使该子树重新恢复平衡 */
func rotate(node: TreeNode?) -> TreeNode? {
// 获取结点 node 的平衡因子
let balanceFactor = balanceFactor(node: node)
// 左偏树
if balanceFactor > 1 {
if self.balanceFactor(node: node?.left) >= 0 {
// 右旋
return rightRotate(node: node)
} else {
// 先左旋后右旋
node?.left = leftRotate(node: node?.left)
return rightRotate(node: node)
}
}
// 右偏树
if balanceFactor < -1 {
if self.balanceFactor(node: node?.right) <= 0 {
// 左旋
return leftRotate(node: node)
} else {
// 先右旋后左旋
node?.right = rightRotate(node: node?.right)
return leftRotate(node: node)
}
}
// 平衡树,无需旋转,直接返回
return node
}
// 执行旋转操作,使该子树重新恢复平衡
fn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
// 获取结点 node 的平衡因子
var balance_factor = self.balanceFactor(node);
// 左偏树
if (balance_factor > 1) {
if (self.balanceFactor(node.?.left) >= 0) {
// 右旋
return self.rightRotate(node);
} else {
// 先左旋后右旋
node.?.left = self.leftRotate(node.?.left);
return self.rightRotate(node);
}
}
// 右偏树
if (balance_factor < -1) {
if (self.balanceFactor(node.?.right) <= 0) {
// 左旋
return self.leftRotate(node);
} else {
// 先右旋后左旋
node.?.right = self.rightRotate(node.?.right);
return self.leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
7.4.3. AVL 树常用操作¶
插入结点¶
「AVL 树」的结点插入操作与「二叉搜索树」主体类似。不同的是,在插入结点后,从该结点到根结点的路径上会出现一系列「失衡结点」。所以,我们需要从该结点开始,从底至顶地执行旋转操作,使所有失衡结点恢复平衡。
/* 插入结点 */
TreeNode insert(int val) {
root = insertHelper(root, val);
return root;
}
/* 递归插入结点(辅助方法) */
TreeNode insertHelper(TreeNode node, int val) {
if (node == null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
node.right = insertHelper(node.right, val);
else
return node; // 重复结点不插入,直接返回
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
/* 插入结点 */
TreeNode* insert(int val) {
root = insertHelper(root, val);
return root;
}
/* 递归插入结点(辅助方法) */
TreeNode* insertHelper(TreeNode* node, int val) {
if (node == nullptr)
return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node->val)
node->left = insertHelper(node->left, val);
else if (val > node->val)
node->right = insertHelper(node->right, val);
else
return node; // 重复结点不插入,直接返回
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
def insert(self, val) -> TreeNode:
""" 插入结点 """
self.__root = self.__insert_helper(self.__root, val)
return self.__root
def __insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:
""" 递归插入结点(辅助方法)"""
if node is None:
return TreeNode(val)
# 1. 查找插入位置,并插入结点
if val < node.val:
node.left = self.__insert_helper(node.left, val)
elif val > node.val:
node.right = self.__insert_helper(node.right, val)
else:
# 重复结点不插入,直接返回
return node
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
/* 插入结点 */
func (t *aVLTree) insert(val int) *TreeNode {
t.root = t.insertHelper(t.root, val)
return t.root
}
/* 递归插入结点(辅助方法) */
func (t *aVLTree) insertHelper(node *TreeNode, val int) *TreeNode {
if node == nil {
return NewTreeNode(val)
}
/* 1. 查找插入位置,并插入结点 */
if val < node.Val {
node.Left = t.insertHelper(node.Left, val)
} else if val > node.Val {
node.Right = t.insertHelper(node.Right, val)
} else {
// 重复结点不插入,直接返回
return node
}
// 更新结点高度
t.updateHeight(node)
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = t.rotate(node)
// 返回子树的根结点
return node
}
/* 插入结点 */
insert(val) {
this.root = this.#insertHelper(this.root, val);
return this.root;
}
/* 递归插入结点(辅助方法) */
#insertHelper(node, val) {
if (node === null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val) node.left = this.#insertHelper(node.left, val);
else if (val > node.val) node.right = this.#insertHelper(node.right, val);
else return node; // 重复结点不插入,直接返回
this.#updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.#rotate(node);
// 返回子树的根结点
return node;
}
/* 插入结点 */
insert(val: number): TreeNode {
this.root = this.insertHelper(this.root, val);
return this.root;
}
/* 递归插入结点(辅助方法) */
insertHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val) {
node.left = this.insertHelper(node.left, val);
} else if (val > node.val) {
node.right = this.insertHelper(node.right, val);
} else {
return node; // 重复结点不插入,直接返回
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根结点
return node;
}
/* 插入结点 */
TreeNode? insert(int val)
{
root = insertHelper(root, val);
return root;
}
/* 递归插入结点(辅助方法) */
TreeNode? insertHelper(TreeNode? node, int val)
{
if (node == null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
node.right = insertHelper(node.right, val);
else
return node; // 重复结点不插入,直接返回
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
/* 插入结点 */
@discardableResult
func insert(val: Int) -> TreeNode? {
root = insertHelper(node: root, val: val)
return root
}
/* 递归插入结点(辅助方法) */
func insertHelper(node: TreeNode?, val: Int) -> TreeNode? {
var node = node
if node == nil {
return TreeNode(x: val)
}
/* 1. 查找插入位置,并插入结点 */
if val < node!.val {
node?.left = insertHelper(node: node?.left, val: val)
} else if val > node!.val {
node?.right = insertHelper(node: node?.right, val: val)
} else {
return node // 重复结点不插入,直接返回
}
updateHeight(node: node) // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node: node)
// 返回子树的根结点
return node
}
// 插入结点
fn insert(self: *Self, val: T) !?*inc.TreeNode(T) {
self.root = try self.insertHelper(self.root, val);
return self.root;
}
// 递归插入结点(辅助方法)
fn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) {
var node = node_;
if (node == null) {
var tmp_node = try self.mem_allocator.create(inc.TreeNode(T));
tmp_node.init(val);
return tmp_node;
}
// 1. 查找插入位置,并插入结点
if (val < node.?.val) {
node.?.left = try self.insertHelper(node.?.left, val);
} else if (val > node.?.val) {
node.?.right = try self.insertHelper(node.?.right, val);
} else {
return node; // 重复结点不插入,直接返回
}
self.updateHeight(node); // 更新结点高度
// 2. 执行旋转操作,使该子树重新恢复平衡
node = self.rotate(node);
// 返回子树的根结点
return node;
}
删除结点¶
「AVL 树」删除结点操作与「二叉搜索树」删除结点操作总体相同。类似地,在删除结点后,也需要从底至顶地执行旋转操作,使所有失衡结点恢复平衡。
/* 删除结点 */
TreeNode remove(int val) {
root = removeHelper(root, val);
return root;
}
/* 递归删除结点(辅助方法) */
TreeNode removeHelper(TreeNode node, int val) {
if (node == null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
node.right = removeHelper(node.right, val);
else {
if (node.left == null || node.right == null) {
TreeNode child = node.left != null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == null)
return null;
// 子结点数量 = 1 ,直接删除 node
else
node = child;
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
TreeNode temp = getInOrderNext(node.right);
node.right = removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
TreeNode getInOrderNext(TreeNode node) {
if (node == null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left != null) {
node = node.left;
}
return node;
}
/* 删除结点 */
TreeNode* remove(int val) {
root = removeHelper(root, val);
return root;
}
/* 递归删除结点(辅助方法) */
TreeNode* removeHelper(TreeNode* node, int val) {
if (node == nullptr)
return nullptr;
/* 1. 查找结点,并删除之 */
if (val < node->val)
node->left = removeHelper(node->left, val);
else if (val > node->val)
node->right = removeHelper(node->right, val);
else {
if (node->left == nullptr || node->right == nullptr) {
TreeNode* child = node->left != nullptr ? node->left : node->right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == nullptr) {
delete node;
return nullptr;
}
// 子结点数量 = 1 ,直接删除 node
else {
delete node;
node = child;
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
TreeNode* temp = getInOrderNext(node->right);
int tempVal = temp->val;
node->right = removeHelper(node->right, temp->val);
node->val = tempVal;
}
}
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
TreeNode* getInOrderNext(TreeNode* node) {
if (node == nullptr)
return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node->left != nullptr) {
node = node->left;
}
return node;
}
def remove(self, val: int) -> TreeNode | None:
""" 删除结点 """
self.__root = self.__remove_helper(self.__root, val)
return self.__root
def __remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:
""" 递归删除结点(辅助方法) """
if node is None:
return None
# 1. 查找结点,并删除之
if val < node.val:
node.left = self.__remove_helper(node.left, val)
elif val > node.val:
node.right = self.__remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
# 子结点数量 = 0 ,直接删除 node 并返回
if child is None:
return None
# 子结点数量 = 1 ,直接删除 node
else:
node = child
else: # 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
temp = self.__get_inorder_next(node.right)
node.right = self.__remove_helper(node.right, temp.val)
node.val = temp.val
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
def __get_inorder_next(self, node: TreeNode | None) -> TreeNode | None:
""" 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) """
if node is None:
return None
# 循环访问左子结点,直到叶结点时为最小结点,跳出
while node.left is not None:
node = node.left
return node
/* 删除结点 */
func (t *aVLTree) remove(val int) *TreeNode {
root := t.removeHelper(t.root, val)
return root
}
/* 递归删除结点(辅助方法) */
func (t *aVLTree) removeHelper(node *TreeNode, val int) *TreeNode {
if node == nil {
return nil
}
/* 1. 查找结点,并删除之 */
if val < node.Val {
node.Left = t.removeHelper(node.Left, val)
} else if val > node.Val {
node.Right = t.removeHelper(node.Right, val)
} else {
if node.Left == nil || node.Right == nil {
child := node.Left
if node.Right != nil {
child = node.Right
}
// 子结点数量 = 0 ,直接删除 node 并返回
if child == nil {
return nil
} else {
// 子结点数量 = 1 ,直接删除 node
node = child
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
temp := t.getInOrderNext(node.Right)
node.Right = t.removeHelper(node.Right, temp.Val)
node.Val = temp.Val
}
}
// 更新结点高度
t.updateHeight(node)
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = t.rotate(node)
// 返回子树的根结点
return node
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
func (t *aVLTree) getInOrderNext(node *TreeNode) *TreeNode {
if node == nil {
return node
}
// 循环访问左子结点,直到叶结点时为最小结点,跳出
for node.Left != nil {
node = node.Left
}
return node
}
/* 删除结点 */
remove(val) {
this.root = this.#removeHelper(this.root, val);
return this.root;
}
/* 递归删除结点(辅助方法) */
#removeHelper(node, val) {
if (node === null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val) node.left = this.#removeHelper(node.left, val);
else if (val > node.val) node.right = this.#removeHelper(node.right, val);
else {
if (node.left === null || node.right === null) {
const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) return null;
// 子结点数量 = 1 ,直接删除 node
else node = child;
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
const temp = this.#getInOrderNext(node.right);
node.right = this.#removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
this.#updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.#rotate(node);
// 返回子树的根结点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
#getInOrderNext(node) {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
/* 删除结点 */
remove(val: number): TreeNode {
this.root = this.removeHelper(this.root, val);
return this.root;
}
/* 递归删除结点(辅助方法) */
removeHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val) {
node.left = this.removeHelper(node.left, val);
} else if (val > node.val) {
node.right = this.removeHelper(node.right, val);
} else {
if (node.left === null || node.right === null) {
const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) {
return null;
} else {
// 子结点数量 = 1 ,直接删除 node
node = child;
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
const temp = this.getInOrderNext(node.right);
node.right = this.removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根结点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
getInOrderNext(node: TreeNode): TreeNode {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
/* 删除结点 */
TreeNode? remove(int val)
{
root = removeHelper(root, val);
return root;
}
/* 递归删除结点(辅助方法) */
TreeNode? removeHelper(TreeNode? node, int val)
{
if (node == null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
node.right = removeHelper(node.right, val);
else
{
if (node.left == null || node.right == null)
{
TreeNode? child = node.left != null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == null)
return null;
// 子结点数量 = 1 ,直接删除 node
else
node = child;
}
else
{
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
TreeNode? temp = getInOrderNext(node.right);
node.right = removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
TreeNode? getInOrderNext(TreeNode? node)
{
if (node == null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left != null)
{
node = node.left;
}
return node;
}
/* 删除结点 */
@discardableResult
func remove(val: Int) -> TreeNode? {
root = removeHelper(node: root, val: val)
return root
}
/* 递归删除结点(辅助方法) */
func removeHelper(node: TreeNode?, val: Int) -> TreeNode? {
var node = node
if node == nil {
return nil
}
/* 1. 查找结点,并删除之 */
if val < node!.val {
node?.left = removeHelper(node: node?.left, val: val)
} else if val > node!.val {
node?.right = removeHelper(node: node?.right, val: val)
} else {
if node?.left == nil || node?.right == nil {
let child = node?.left != nil ? node?.left : node?.right
// 子结点数量 = 0 ,直接删除 node 并返回
if child == nil {
return nil
}
// 子结点数量 = 1 ,直接删除 node
else {
node = child
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
let temp = getInOrderNext(node: node?.right)
node?.right = removeHelper(node: node?.right, val: temp!.val)
node?.val = temp!.val
}
}
updateHeight(node: node) // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node: node)
// 返回子树的根结点
return node
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
func getInOrderNext(node: TreeNode?) -> TreeNode? {
var node = node
if node == nil {
return node
}
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while node?.left != nil {
node = node?.left
}
return node
}
// 删除结点
fn remove(self: *Self, val: T) ?*inc.TreeNode(T) {
self.root = self.removeHelper(self.root, val);
return self.root;
}
// 递归删除结点(辅助方法)
fn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {
var node = node_;
if (node == null) return null;
// 1. 查找结点,并删除之
if (val < node.?.val) {
node.?.left = self.removeHelper(node.?.left, val);
} else if (val > node.?.val) {
node.?.right = self.removeHelper(node.?.right, val);
} else {
if (node.?.left == null or node.?.right == null) {
var child = if (node.?.left != null) node.?.left else node.?.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == null) {
return null;
// 子结点数量 = 1 ,直接删除 node
} else {
node = child;
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
var temp = self.getInOrderNext(node.?.right);
node.?.right = self.removeHelper(node.?.right, temp.?.val);
node.?.val = temp.?.val;
}
}
self.updateHeight(node); // 更新结点高度
// 2. 执行旋转操作,使该子树重新恢复平衡
node = self.rotate(node);
// 返回子树的根结点
return node;
}
// 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况)
fn getInOrderNext(self: *Self, node_: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
_ = self;
var node = node_;
if (node == null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.?.left != null) {
node = node.?.left;
}
return node;
}
查找结点¶
「AVL 树」的结点查找操作与「二叉搜索树」一致,在此不再赘述。
7.4.4. AVL 树典型应用¶
- 组织存储大型数据,适用于高频查找、低频增删场景;
- 用于建立数据库中的索引系统;
为什么红黑树比 AVL 树更受欢迎?
红黑树的平衡条件相对宽松,因此在红黑树中插入与删除结点所需的旋转操作相对更少,结点增删操作相比 AVL 树的效率更高。