12.2. 哈希优化策略¶
在算法题中,我们时常通过将线性查找替换为哈希查找来降低算法的时间复杂度。以 LeetCode 全站第一题 两数之和 为例。
两数之和
给定一个整数数组 nums
和一个整数目标值 target
,请你在该数组中找出“和”为目标值 target
的那两个整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
12.2.1. 线性查找:以时间换空间¶
考虑直接遍历所有可能的组合。开启一个两层循环,在每轮中判断两个整数的和是否为 target
,若是,则返回它们的索引。
(图)
leetcode_two_sum.zig
// 方法一:暴力枚举
fn twoSumBruteForce(nums: []i32, target: i32) ?[2]i32 {
var size: usize = nums.len;
var i: usize = 0;
// 两层循环,时间复杂度 O(n^2)
while (i < size - 1) : (i += 1) {
var j = i + 1;
while (j < size) : (j += 1) {
if (nums[i] + nums[j] == target) {
return [_]i32{@intCast(i32, i), @intCast(i32, j)};
}
}
}
return null;
}
此方法的时间复杂度为 \(O(n^2)\) ,空间复杂度为 \(O(1)\) ,在大数据量下非常耗时。
12.2.2. 哈希查找:以空间换时间¶
考虑借助一个哈希表,将数组元素和元素索引构建为键值对。循环遍历数组中的每个元素 num
并执行:
- 判断数字
target - num
是否在哈希表中,若是则直接返回该两个元素的索引; - 将元素
num
和其索引添加进哈希表;
(图)
leetcode_two_sum.java
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target) {
int size = nums.length;
// 辅助哈希表,空间复杂度 O(n)
Map<Integer, Integer> dic = new HashMap<>();
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++) {
if (dic.containsKey(target - nums[i])) {
return new int[] { dic.get(target - nums[i]), i };
}
dic.put(nums[i], i);
}
return new int[0];
}
leetcode_two_sum.cpp
/* 方法二:辅助哈希表 */
vector<int> twoSumHashTable(vector<int> &nums, int target) {
int size = nums.size();
// 辅助哈希表,空间复杂度 O(n)
unordered_map<int, int> dic;
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++) {
if (dic.find(target - nums[i]) != dic.end()) {
return {dic[target - nums[i]], i};
}
dic.emplace(nums[i], i);
}
return {};
}
leetcode_two_sum.ts
/* 方法二:辅助哈希表 */
function twoSumHashTable(nums: number[], target: number): number[] {
// 辅助哈希表,空间复杂度 O(n)
let m: Map<number, number> = new Map();
// 单层循环,时间复杂度 O(n)
for (let i = 0; i < nums.length; i++) {
let index = m.get(nums[i]);
if (index !== undefined) {
return [index, i];
} else {
m.set(target - nums[i], i);
}
}
return [];
}
leetcode_two_sum.cs
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target)
{
int size = nums.Length;
// 辅助哈希表,空间复杂度 O(n)
Dictionary<int, int> dic = new();
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++)
{
if (dic.ContainsKey(target - nums[i]))
{
return new int[] { dic[target - nums[i]], i };
}
dic.Add(nums[i], i);
}
return new int[0];
}
leetcode_two_sum.zig
// 方法二:辅助哈希表
fn twoSumHashTable(nums: []i32, target: i32) !?[2]i32 {
var size: usize = nums.len;
// 辅助哈希表,空间复杂度 O(n)
var dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);
defer dic.deinit();
var i: usize = 0;
// 单层循环,时间复杂度 O(n)
while (i < size) : (i += 1) {
if (dic.contains(target - nums[i])) {
return [_]i32{dic.get(target - nums[i]).?, @intCast(i32, i)};
}
try dic.put(nums[i], @intCast(i32, i));
}
return null;
}
此方法通过哈希查找将时间复杂度从 \(O(n^2)\) 降低至 \(O(n)\) ,大幅提升运行效率。
由于需要维护一个额外的哈希表,因此空间复杂度为 \(O(n)\) 。尽管如此,该方法的整体时空效率更为均衡,因此它是本题的最优解法。