6.2 哈希冲突¶
上节提到,通常情况下哈希函数的输入空间远大于输出空间,因此理论上哈希冲突是不可避免的。比如,输入空间为全体整数,输出空间为数组容量大小,则必然有多个整数映射至同一数组索引。
哈希冲突会导致查询结果错误,严重影响哈希表的可用性。为解决该问题,我们可以每当遇到哈希冲突时就进行哈希表扩容,直至冲突消失为止。此方法简单粗暴且有效,但效率太低,因为哈希表扩容需要进行大量的数据搬运与哈希值计算。为了提升效率,我们可以采用以下策略。
- 改良哈希表数据结构,使得哈希表可以在存在哈希冲突时正常工作。
- 仅在必要时,即当哈希冲突比较严重时,才执行扩容操作。
哈希表的结构改良方法主要包括“链式地址”和“开放寻址”。
6.2.1 链式地址¶
在原始哈希表中,每个桶仅能存储一个键值对。「链式地址 separate chaining」将单个元素转换为链表,将键值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。图 6-5 展示了一个链式地址哈希表的例子。
图 6-5 链式地址哈希表
哈希表在链式地址下的操作方法发生了一些变化。
- 查询元素:输入
key
,经过哈希函数得到数组索引,即可访问链表头节点,然后遍历链表并对比key
以查找目标键值对。 - 添加元素:先通过哈希函数访问链表头节点,然后将节点(即键值对)添加到链表中。
- 删除元素:根据哈希函数的结果访问链表头部,接着遍历链表以查找目标节点,并将其删除。
链式地址存在以下局限性。
- 占用空间增大,链表包含节点指针,它相比数组更加耗费内存空间。
- 查询效率降低,因为需要线性遍历链表来查找对应元素。
以下代码给出了链式地址哈希表的简单实现,需要注意两点。
- 使用列表(动态数组)代替链表,从而简化代码。在这种设定下,哈希表(数组)包含多个桶,每个桶都是一个列表。
- 以下实现包含哈希表扩容方法。当负载因子超过 \(0.75\) 时,我们将哈希表扩容至 \(2\) 倍。
class HashMapChaining:
"""链式地址哈希表"""
def __init__(self):
"""构造方法"""
self.size = 0 # 键值对数量
self.capacity = 4 # 哈希表容量
self.load_thres = 2 / 3 # 触发扩容的负载因子阈值
self.extend_ratio = 2 # 扩容倍数
self.buckets = [[] for _ in range(self.capacity)] # 桶数组
def hash_func(self, key: int) -> int:
"""哈希函数"""
return key % self.capacity
def load_factor(self) -> float:
"""负载因子"""
return self.size / self.capacity
def get(self, key: int) -> str:
"""查询操作"""
index = self.hash_func(key)
bucket = self.buckets[index]
# 遍历桶,若找到 key 则返回对应 val
for pair in bucket:
if pair.key == key:
return pair.val
# 若未找到 key 则返回 None
return None
def put(self, key: int, val: str):
"""添加操作"""
# 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres:
self.extend()
index = self.hash_func(key)
bucket = self.buckets[index]
# 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for pair in bucket:
if pair.key == key:
pair.val = val
return
# 若无该 key ,则将键值对添加至尾部
pair = Pair(key, val)
bucket.append(pair)
self.size += 1
def remove(self, key: int):
"""删除操作"""
index = self.hash_func(key)
bucket = self.buckets[index]
# 遍历桶,从中删除键值对
for pair in bucket:
if pair.key == key:
bucket.remove(pair)
self.size -= 1
break
def extend(self):
"""扩容哈希表"""
# 暂存原哈希表
buckets = self.buckets
# 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio
self.buckets = [[] for _ in range(self.capacity)]
self.size = 0
# 将键值对从原哈希表搬运至新哈希表
for bucket in buckets:
for pair in bucket:
self.put(pair.key, pair.val)
def print(self):
"""打印哈希表"""
for bucket in self.buckets:
res = []
for pair in bucket:
res.append(str(pair.key) + " -> " + pair.val)
print(res)
/* 链式地址哈希表 */
class HashMapChaining {
private:
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
vector<vector<Pair *>> buckets; // 桶数组
public:
/* 构造方法 */
HashMapChaining() : size(0), capacity(4), loadThres(2.0 / 3), extendRatio(2) {
buckets.resize(capacity);
}
/* 析构方法 */
~HashMapChaining() {
for (auto &bucket : buckets) {
for (Pair *pair : bucket) {
// 释放内存
delete pair;
}
}
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double)size / (double)capacity;
}
/* 查询操作 */
string get(int key) {
int index = hashFunc(key);
// 遍历桶,若找到 key 则返回对应 val
for (Pair *pair : buckets[index]) {
if (pair->key == key) {
return pair->val;
}
}
// 若未找到 key 则返回 nullptr
return nullptr;
}
/* 添加操作 */
void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair *pair : buckets[index]) {
if (pair->key == key) {
pair->val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
buckets[index].push_back(new Pair(key, val));
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
auto &bucket = buckets[index];
// 遍历桶,从中删除键值对
for (int i = 0; i < bucket.size(); i++) {
if (bucket[i]->key == key) {
Pair *tmp = bucket[i];
bucket.erase(bucket.begin() + i); // 从中删除键值对
delete tmp; // 释放内存
size--;
return;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
vector<vector<Pair *>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets.clear();
buckets.resize(capacity);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (auto &bucket : bucketsTmp) {
for (Pair *pair : bucket) {
put(pair->key, pair->val);
// 释放内存
delete pair;
}
}
}
/* 打印哈希表 */
void print() {
for (auto &bucket : buckets) {
cout << "[";
for (Pair *pair : bucket) {
cout << pair->key << " -> " << pair->val << ", ";
}
cout << "]\n";
}
}
};
/* 链式地址哈希表 */
class HashMapChaining {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
List<List<Pair>> buckets; // 桶数组
/* 构造方法 */
public HashMapChaining() {
size = 0;
capacity = 4;
loadThres = 2 / 3.0;
extendRatio = 2;
buckets = new ArrayList<>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.add(new ArrayList<>());
}
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double) size / capacity;
}
/* 查询操作 */
String get(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets.get(index);
// 遍历桶,若找到 key 则返回对应 val
for (Pair pair : bucket) {
if (pair.key == key) {
return pair.val;
}
}
// 若未找到 key 则返回 null
return null;
}
/* 添加操作 */
void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
List<Pair> bucket = buckets.get(index);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair pair : bucket) {
if (pair.key == key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
Pair pair = new Pair(key, val);
bucket.add(pair);
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets.get(index);
// 遍历桶,从中删除键值对
for (Pair pair : bucket) {
if (pair.key == key) {
bucket.remove(pair);
size--;
break;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
List<List<Pair>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new ArrayList<>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.add(new ArrayList<>());
}
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (List<Pair> bucket : bucketsTmp) {
for (Pair pair : bucket) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
void print() {
for (List<Pair> bucket : buckets) {
List<String> res = new ArrayList<>();
for (Pair pair : bucket) {
res.add(pair.key + " -> " + pair.val);
}
System.out.println(res);
}
}
}
/* 链式地址哈希表 */
class HashMapChaining {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
List<List<Pair>> buckets; // 桶数组
/* 构造方法 */
public HashMapChaining() {
size = 0;
capacity = 4;
loadThres = 2 / 3.0;
extendRatio = 2;
buckets = new List<List<Pair>>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.Add(new List<Pair>());
}
}
/* 哈希函数 */
private int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
private double loadFactor() {
return (double)size / capacity;
}
/* 查询操作 */
public string get(int key) {
int index = hashFunc(key);
// 遍历桶,若找到 key 则返回对应 val
foreach (Pair pair in buckets[index]) {
if (pair.key == key) {
return pair.val;
}
}
// 若未找到 key 则返回 null
return null;
}
/* 添加操作 */
public void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
foreach (Pair pair in buckets[index]) {
if (pair.key == key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
buckets[index].Add(new Pair(key, val));
size++;
}
/* 删除操作 */
public void remove(int key) {
int index = hashFunc(key);
// 遍历桶,从中删除键值对
foreach (Pair pair in buckets[index].ToList()) {
if (pair.key == key) {
buckets[index].Remove(pair);
size--;
break;
}
}
}
/* 扩容哈希表 */
private void extend() {
// 暂存原哈希表
List<List<Pair>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new List<List<Pair>>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.Add(new List<Pair>());
}
size = 0;
// 将键值对从原哈希表搬运至新哈希表
foreach (List<Pair> bucket in bucketsTmp) {
foreach (Pair pair in bucket) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
public void print() {
foreach (List<Pair> bucket in buckets) {
List<string> res = new List<string>();
foreach (Pair pair in bucket) {
res.Add(pair.key + " -> " + pair.val);
}
foreach (string kv in res) {
Console.WriteLine(kv);
}
}
}
}
/* 链式地址哈希表 */
type hashMapChaining struct {
size int // 键值对数量
capacity int // 哈希表容量
loadThres float64 // 触发扩容的负载因子阈值
extendRatio int // 扩容倍数
buckets [][]pair // 桶数组
}
/* 构造方法 */
func newHashMapChaining() *hashMapChaining {
buckets := make([][]pair, 4)
for i := 0; i < 4; i++ {
buckets[i] = make([]pair, 0)
}
return &hashMapChaining{
size: 0,
capacity: 4,
loadThres: 2 / 3.0,
extendRatio: 2,
buckets: buckets,
}
}
/* 哈希函数 */
func (m *hashMapChaining) hashFunc(key int) int {
return key % m.capacity
}
/* 负载因子 */
func (m *hashMapChaining) loadFactor() float64 {
return float64(m.size / m.capacity)
}
/* 查询操作 */
func (m *hashMapChaining) get(key int) string {
idx := m.hashFunc(key)
bucket := m.buckets[idx]
// 遍历桶,若找到 key 则返回对应 val
for _, p := range bucket {
if p.key == key {
return p.val
}
}
// 若未找到 key 则返回空字符串
return ""
}
/* 添加操作 */
func (m *hashMapChaining) put(key int, val string) {
// 当负载因子超过阈值时,执行扩容
if m.loadFactor() > m.loadThres {
m.extend()
}
idx := m.hashFunc(key)
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for _, p := range m.buckets[idx] {
if p.key == key {
p.val = val
return
}
}
// 若无该 key ,则将键值对添加至尾部
p := pair{
key: key,
val: val,
}
m.buckets[idx] = append(m.buckets[idx], p)
m.size += 1
}
/* 删除操作 */
func (m *hashMapChaining) remove(key int) {
idx := m.hashFunc(key)
// 遍历桶,从中删除键值对
for i, p := range m.buckets[idx] {
if p.key == key {
// 切片删除
m.buckets[idx] = append(m.buckets[idx][:i], m.buckets[idx][i+1:]...)
m.size -= 1
break
}
}
}
/* 扩容哈希表 */
func (m *hashMapChaining) extend() {
// 暂存原哈希表
tmpBuckets := make([][]pair, len(m.buckets))
for i := 0; i < len(m.buckets); i++ {
tmpBuckets[i] = make([]pair, len(m.buckets[i]))
copy(tmpBuckets[i], m.buckets[i])
}
// 初始化扩容后的新哈希表
m.capacity *= m.extendRatio
m.buckets = make([][]pair, m.capacity)
for i := 0; i < m.capacity; i++ {
m.buckets[i] = make([]pair, 0)
}
m.size = 0
// 将键值对从原哈希表搬运至新哈希表
for _, bucket := range tmpBuckets {
for _, p := range bucket {
m.put(p.key, p.val)
}
}
}
/* 打印哈希表 */
func (m *hashMapChaining) print() {
var builder strings.Builder
for _, bucket := range m.buckets {
builder.WriteString("[")
for _, p := range bucket {
builder.WriteString(strconv.Itoa(p.key) + " -> " + p.val + " ")
}
builder.WriteString("]")
fmt.Println(builder.String())
builder.Reset()
}
}
/* 链式地址哈希表 */
class HashMapChaining {
var size: Int // 键值对数量
var capacity: Int // 哈希表容量
var loadThres: Double // 触发扩容的负载因子阈值
var extendRatio: Int // 扩容倍数
var buckets: [[Pair]] // 桶数组
/* 构造方法 */
init() {
size = 0
capacity = 4
loadThres = 2 / 3
extendRatio = 2
buckets = Array(repeating: [], count: capacity)
}
/* 哈希函数 */
func hashFunc(key: Int) -> Int {
key % capacity
}
/* 负载因子 */
func loadFactor() -> Double {
Double(size / capacity)
}
/* 查询操作 */
func get(key: Int) -> String? {
let index = hashFunc(key: key)
let bucket = buckets[index]
// 遍历桶,若找到 key 则返回对应 val
for pair in bucket {
if pair.key == key {
return pair.val
}
}
// 若未找到 key 则返回 nil
return nil
}
/* 添加操作 */
func put(key: Int, val: String) {
// 当负载因子超过阈值时,执行扩容
if loadFactor() > loadThres {
extend()
}
let index = hashFunc(key: key)
let bucket = buckets[index]
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for pair in bucket {
if pair.key == key {
pair.val = val
return
}
}
// 若无该 key ,则将键值对添加至尾部
let pair = Pair(key: key, val: val)
buckets[index].append(pair)
size += 1
}
/* 删除操作 */
func remove(key: Int) {
let index = hashFunc(key: key)
let bucket = buckets[index]
// 遍历桶,从中删除键值对
for (pairIndex, pair) in bucket.enumerated() {
if pair.key == key {
buckets[index].remove(at: pairIndex)
}
}
size -= 1
}
/* 扩容哈希表 */
func extend() {
// 暂存原哈希表
let bucketsTmp = buckets
// 初始化扩容后的新哈希表
capacity *= extendRatio
buckets = Array(repeating: [], count: capacity)
size = 0
// 将键值对从原哈希表搬运至新哈希表
for bucket in bucketsTmp {
for pair in bucket {
put(key: pair.key, val: pair.val)
}
}
}
/* 打印哈希表 */
func print() {
for bucket in buckets {
let res = bucket.map { "\($0.key) -> \($0.val)" }
Swift.print(res)
}
}
}
/* 链式地址哈希表 */
class HashMapChaining {
#size; // 键值对数量
#capacity; // 哈希表容量
#loadThres; // 触发扩容的负载因子阈值
#extendRatio; // 扩容倍数
#buckets; // 桶数组
/* 构造方法 */
constructor() {
this.#size = 0;
this.#capacity = 4;
this.#loadThres = 2 / 3.0;
this.#extendRatio = 2;
this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);
}
/* 哈希函数 */
#hashFunc(key) {
return key % this.#capacity;
}
/* 负载因子 */
#loadFactor() {
return this.#size / this.#capacity;
}
/* 查询操作 */
get(key) {
const index = this.#hashFunc(key);
const bucket = this.#buckets[index];
// 遍历桶,若找到 key 则返回对应 val
for (const pair of bucket) {
if (pair.key === key) {
return pair.val;
}
}
// 若未找到 key 则返回 null
return null;
}
/* 添加操作 */
put(key, val) {
// 当负载因子超过阈值时,执行扩容
if (this.#loadFactor() > this.#loadThres) {
this.#extend();
}
const index = this.#hashFunc(key);
const bucket = this.#buckets[index];
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (const pair of bucket) {
if (pair.key === key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
const pair = new Pair(key, val);
bucket.push(pair);
this.#size++;
}
/* 删除操作 */
remove(key) {
const index = this.#hashFunc(key);
let bucket = this.#buckets[index];
// 遍历桶,从中删除键值对
for (let i = 0; i < bucket.length; i++) {
if (bucket[i].key === key) {
bucket.splice(i, 1);
this.#size--;
break;
}
}
}
/* 扩容哈希表 */
#extend() {
// 暂存原哈希表
const bucketsTmp = this.#buckets;
// 初始化扩容后的新哈希表
this.#capacity *= this.#extendRatio;
this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);
this.#size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (const bucket of bucketsTmp) {
for (const pair of bucket) {
this.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
print() {
for (const bucket of this.#buckets) {
let res = [];
for (const pair of bucket) {
res.push(pair.key + ' -> ' + pair.val);
}
console.log(res);
}
}
}
/* 链式地址哈希表 */
class HashMapChaining {
#size: number; // 键值对数量
#capacity: number; // 哈希表容量
#loadThres: number; // 触发扩容的负载因子阈值
#extendRatio: number; // 扩容倍数
#buckets: Pair[][]; // 桶数组
/* 构造方法 */
constructor() {
this.#size = 0;
this.#capacity = 4;
this.#loadThres = 2 / 3.0;
this.#extendRatio = 2;
this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);
}
/* 哈希函数 */
#hashFunc(key: number): number {
return key % this.#capacity;
}
/* 负载因子 */
#loadFactor(): number {
return this.#size / this.#capacity;
}
/* 查询操作 */
get(key: number): string | null {
const index = this.#hashFunc(key);
const bucket = this.#buckets[index];
// 遍历桶,若找到 key 则返回对应 val
for (const pair of bucket) {
if (pair.key === key) {
return pair.val;
}
}
// 若未找到 key 则返回 null
return null;
}
/* 添加操作 */
put(key: number, val: string): void {
// 当负载因子超过阈值时,执行扩容
if (this.#loadFactor() > this.#loadThres) {
this.#extend();
}
const index = this.#hashFunc(key);
const bucket = this.#buckets[index];
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (const pair of bucket) {
if (pair.key === key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
const pair = new Pair(key, val);
bucket.push(pair);
this.#size++;
}
/* 删除操作 */
remove(key: number): void {
const index = this.#hashFunc(key);
let bucket = this.#buckets[index];
// 遍历桶,从中删除键值对
for (let i = 0; i < bucket.length; i++) {
if (bucket[i].key === key) {
bucket.splice(i, 1);
this.#size--;
break;
}
}
}
/* 扩容哈希表 */
#extend(): void {
// 暂存原哈希表
const bucketsTmp = this.#buckets;
// 初始化扩容后的新哈希表
this.#capacity *= this.#extendRatio;
this.#buckets = new Array(this.#capacity).fill(null).map((x) => []);
this.#size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (const bucket of bucketsTmp) {
for (const pair of bucket) {
this.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
print(): void {
for (const bucket of this.#buckets) {
let res = [];
for (const pair of bucket) {
res.push(pair.key + ' -> ' + pair.val);
}
console.log(res);
}
}
}
/* 链式地址哈希表 */
class HashMapChaining {
late int size; // 键值对数量
late int capacity; // 哈希表容量
late double loadThres; // 触发扩容的负载因子阈值
late int extendRatio; // 扩容倍数
late List<List<Pair>> buckets; // 桶数组
/* 构造方法 */
HashMapChaining() {
size = 0;
capacity = 4;
loadThres = 2 / 3.0;
extendRatio = 2;
buckets = List.generate(capacity, (_) => []);
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return size / capacity;
}
/* 查询操作 */
String? get(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets[index];
// 遍历桶,若找到 key 则返回对应 val
for (Pair pair in bucket) {
if (pair.key == key) {
return pair.val;
}
}
// 若未找到 key 则返回 null
return null;
}
/* 添加操作 */
void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
List<Pair> bucket = buckets[index];
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair pair in bucket) {
if (pair.key == key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
Pair pair = Pair(key, val);
bucket.add(pair);
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets[index];
// 遍历桶,从中删除键值对
for (Pair pair in bucket) {
if (pair.key == key) {
bucket.remove(pair);
size--;
break;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
List<List<Pair>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = List.generate(capacity, (_) => []);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (List<Pair> bucket in bucketsTmp) {
for (Pair pair in bucket) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
void printHashMap() {
for (List<Pair> bucket in buckets) {
List<String> res = [];
for (Pair pair in bucket) {
res.add("${pair.key} -> ${pair.val}");
}
print(res);
}
}
}
/* 链式地址哈希表 */
struct HashMapChaining {
size: i32,
capacity: i32,
load_thres: f32,
extend_ratio: i32,
buckets: Vec<Vec<Pair>>,
}
impl HashMapChaining {
/* 构造方法 */
fn new() -> Self {
Self {
size: 0,
capacity: 4,
load_thres: 2.0 / 3.0,
extend_ratio: 2,
buckets: vec![vec![]; 4],
}
}
/* 哈希函数 */
fn hash_func(&self, key: i32) -> usize {
key as usize % self.capacity as usize
}
/* 负载因子 */
fn load_factor(&self) -> f32 {
self.size as f32 / self.capacity as f32
}
/* 删除操作 */
fn remove(&mut self, key: i32) -> Option<String> {
let index = self.hash_func(key);
let bucket = &mut self.buckets[index];
// 遍历桶,从中删除键值对
for i in 0..bucket.len() {
if bucket[i].key == key {
let pair = bucket.remove(i);
self.size -= 1;
return Some(pair.val);
}
}
// 若未找到 key 则返回 None
None
}
/* 扩容哈希表 */
fn extend(&mut self) {
// 暂存原哈希表
let buckets_tmp = std::mem::replace(&mut self.buckets, vec![]);
// 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio;
self.buckets = vec![Vec::new(); self.capacity as usize];
self.size = 0;
// 将键值对从原哈希表搬运至新哈希表
for bucket in buckets_tmp {
for pair in bucket {
self.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
fn print(&self) {
for bucket in &self.buckets {
let mut res = Vec::new();
for pair in bucket {
res.push(format!("{} -> {}", pair.key, pair.val));
}
println!("{:?}", res);
}
}
/* 添加操作 */
fn put(&mut self, key: i32, val: String) {
// 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres {
self.extend();
}
let index = self.hash_func(key);
let bucket = &mut self.buckets[index];
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for pair in bucket {
if pair.key == key {
pair.val = val.clone();
return;
}
}
let bucket = &mut self.buckets[index];
// 若无该 key ,则将键值对添加至尾部
let pair = Pair {
key,
val: val.clone(),
};
bucket.push(pair);
self.size += 1;
}
/* 查询操作 */
fn get(&self, key: i32) -> Option<&str> {
let index = self.hash_func(key);
let bucket = &self.buckets[index];
// 遍历桶,若找到 key 则返回对应 val
for pair in bucket {
if pair.key == key {
return Some(&pair.val);
}
}
// 若未找到 key 则返回 None
None
}
}
/* 基于数组简易实现的链式地址哈希表 */
struct hashMapChaining {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
Pair *buckets; // 桶数组
};
typedef struct hashMapChaining hashMapChaining;
/* 初始化桶数组 */
hashMapChaining *newHashMapChaining() {
// 为哈希表分配空间
int tableSize = 4;
hashMapChaining *hashmap = (hashMapChaining *)malloc(sizeof(hashMapChaining));
// 初始化数组
hashmap->buckets = (Pair *)malloc(sizeof(Pair) * tableSize);
memset(hashmap->buckets, 0, sizeof(Pair) * tableSize);
hashmap->capacity = tableSize;
hashmap->size = 0;
hashmap->extendRatio = 2;
hashmap->loadThres = 2.0 / 3;
return hashmap;
}
/* 销毁哈希表 */
void delHashMapChaining(hashMapChaining *hashmap) {
for (int i = 0; i < hashmap->capacity; i++) {
Pair *pair = &hashmap->buckets[i];
Node *node = pair->node;
while (node != NULL) {
Node *temp = node;
node = node->next;
free(temp->val);
free(temp);
}
}
free(hashmap->buckets);
free(hashmap);
}
/* 哈希函数 */
int hashFunc(hashMapChaining *hashmap, const int key) {
return key % hashmap->capacity;
}
/* 负载因子 */
double loadFactor(hashMapChaining *hashmap) {
return (double)hashmap->size / (double)hashmap->capacity;
}
/* 添加操作 */
void put(hashMapChaining *hashmap, const int key, char *val) {
if (loadFactor(hashmap) > hashmap->loadThres) {
extend(hashmap);
}
int index = hashFunc(hashmap, key);
// 先为新节点分配空间再赋值
Node *newNode = (Node *)malloc(sizeof(Node));
memset(newNode, 0, sizeof(Node));
newNode->key = key;
newNode->val = (char *)malloc(strlen(val) + 1);
strcpy(newNode->val, val);
newNode->val[strlen(val)] = '\0';
Pair *pair = &hashmap->buckets[index];
Node *node = pair->node;
if (node == NULL) {
hashmap->buckets[index].node = newNode;
hashmap->size++;
return;
}
while (node != NULL) {
if (node->key == key) {
// 释放先前分配的内存
free(node->val);
// 更新节点的值
node->val = (char *)malloc(strlen(val) + 1);
strcpy(node->val, val);
node->val[strlen(val)] = '\0';
return;
}
if (node->next == NULL) {
break;
}
node = node->next;
}
node->next = newNode;
hashmap->size++;
}
/* 删除操作 */
void removeItem(hashMapChaining *hashmap, int key) {
int index = hashFunc(hashmap, key);
Pair *pair = &hashmap->buckets[index];
Node *node = pair->node;
// 保存后继的节点
Node *prev = NULL;
while (node != NULL) {
if (node->key == key) {
// 如果要删除的节点是桶的第一个节点
if (prev == NULL) {
pair->node = node->next;
} else {
prev->next = node->next;
}
// 释放内存
free(node->val);
free(node);
hashmap->size--;
return;
}
prev = node;
node = node->next;
}
return;
}
/* 扩容哈希表 */
void extend(hashMapChaining *hashmap) {
// 暂存原哈希表
Pair *oldBuckets = hashmap->buckets;
int oldCapacity = hashmap->capacity;
// 创建新的哈希表,重新分配一段空间
hashmap->capacity *= hashmap->extendRatio;
hashmap->buckets = (Pair *)malloc(sizeof(Pair) * hashmap->capacity);
memset(hashmap->buckets, 0, sizeof(Pair) * hashmap->capacity);
hashmap->size = 0;
// 将原哈希表中的键值对重新哈希到新的哈希表中
for (int i = 0; i < oldCapacity; i++) {
Node *node = oldBuckets[i].node;
while (node != NULL) {
put(hashmap, node->key, node->val);
node = node->next;
}
}
// 释放原哈希表的内存
for (int i = 0; i < oldCapacity; i++) {
Node *node = oldBuckets[i].node;
while (node != NULL) {
Node *temp = node;
node = node->next;
free(temp->val);
free(temp);
}
}
free(oldBuckets);
}
/* 打印哈希表 */
void print(hashMapChaining *hashmap) {
for (int i = 0; i < hashmap->capacity; i++) {
printf("[");
Pair *pair = &hashmap->buckets[i];
Node *node = pair->node;
while (node != NULL) {
if (node->val != NULL) {
printf("%d->%s, ", node->key, node->val);
}
node = node->next;
}
printf("]\n");
}
return;
}
值得注意的是,当链表很长时,查询效率 \(O(n)\) 很差。此时可以将链表转换为“AVL 树”或“红黑树”,从而将查询操作的时间复杂度优化至 \(O(\log n)\) 。
6.2.2 开放寻址¶
「开放寻址 open addressing」不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测、多次哈希等。
1. 线性探测¶
线性探测采用固定步长的线性搜索来进行探测,其操作方法与普通哈希表有所不同。
- 插入元素:通过哈希函数计算数组索引,若发现桶内已有元素,则从冲突位置向后线性遍历(步长通常为 \(1\) ),直至找到空位,将元素插入其中。
- 查找元素:若发现哈希冲突,则使用相同步长向后线性遍历,直到找到对应元素,返回
value
即可;如果遇到空位,说明目标键值对不在哈希表中,返回 \(\text{None}\) 。
图 6-6 展示了一个在开放寻址(线性探测)下工作的哈希表。
图 6-6 开放寻址和线性探测
然而,线性探测存在以下缺陷。
- 不能直接删除元素。删除元素会在数组内产生一个空位,当查找该空位之后的元素时,该空位可能导致程序误判元素不存在。为此,通常需要借助一个标志位来标记已删除元素。
- 容易产生聚集。数组内连续被占用位置越长,这些连续位置发生哈希冲突的可能性越大,进一步促使这一位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。
以下代码实现了一个简单的开放寻址(线性探测)哈希表。
- 我们使用一个固定的键值对实例
removed
来标记已删除元素。也就是说,当一个桶内的元素为 \(\text{None}\) 或removed
时,说明这个桶是空的,可用于放置键值对。 - 在线性探测时,我们从当前索引
index
向后遍历;而当越过数组尾部时,需要回到头部继续遍历。
class HashMapOpenAddressing:
"""开放寻址哈希表"""
def __init__(self):
"""构造方法"""
self.size = 0 # 键值对数量
self.capacity = 4 # 哈希表容量
self.load_thres = 2 / 3 # 触发扩容的负载因子阈值
self.extend_ratio = 2 # 扩容倍数
self.buckets: list[Pair | None] = [None] * self.capacity # 桶数组
self.removed = Pair(-1, "-1") # 删除标记
def hash_func(self, key: int) -> int:
"""哈希函数"""
return key % self.capacity
def load_factor(self) -> float:
"""负载因子"""
return self.size / self.capacity
def get(self, key: int) -> str:
"""查询操作"""
index = self.hash_func(key)
# 线性探测,从 index 开始向后遍历
for i in range(self.capacity):
# 计算桶索引,越过尾部返回头部
j = (index + i) % self.capacity
# 若遇到空桶,说明无此 key ,则返回 None
if self.buckets[j] is None:
return None
# 若遇到指定 key ,则返回对应 val
if self.buckets[j].key == key and self.buckets[j] != self.removed:
return self.buckets[j].val
def put(self, key: int, val: str):
"""添加操作"""
# 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres:
self.extend()
index = self.hash_func(key)
# 线性探测,从 index 开始向后遍历
for i in range(self.capacity):
# 计算桶索引,越过尾部返回头部
j = (index + i) % self.capacity
# 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if self.buckets[j] in [None, self.removed]:
self.buckets[j] = Pair(key, val)
self.size += 1
return
# 若遇到指定 key ,则更新对应 val
if self.buckets[j].key == key:
self.buckets[j].val = val
return
def remove(self, key: int):
"""删除操作"""
index = self.hash_func(key)
# 线性探测,从 index 开始向后遍历
for i in range(self.capacity):
# 计算桶索引,越过尾部返回头部
j = (index + i) % self.capacity
# 若遇到空桶,说明无此 key ,则直接返回
if self.buckets[j] is None:
return
# 若遇到指定 key ,则标记删除并返回
if self.buckets[j].key == key:
self.buckets[j] = self.removed
self.size -= 1
return
def extend(self):
"""扩容哈希表"""
# 暂存原哈希表
buckets_tmp = self.buckets
# 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio
self.buckets = [None] * self.capacity
self.size = 0
# 将键值对从原哈希表搬运至新哈希表
for pair in buckets_tmp:
if pair not in [None, self.removed]:
self.put(pair.key, pair.val)
def print(self):
"""打印哈希表"""
for pair in self.buckets:
if pair is not None:
print(pair.key, "->", pair.val)
else:
print("None")
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private:
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
vector<Pair *> buckets; // 桶数组
Pair *removed; // 删除标记
public:
/* 构造方法 */
HashMapOpenAddressing() {
// 构造方法
size = 0;
capacity = 4;
loadThres = 2.0 / 3.0;
extendRatio = 2;
buckets = vector<Pair *>(capacity, nullptr);
removed = new Pair(-1, "-1");
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return static_cast<double>(size) / capacity;
}
/* 查询操作 */
string get(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则返回 nullptr
if (buckets[j] == nullptr)
return nullptr;
// 若遇到指定 key ,则返回对应 val
if (buckets[j]->key == key && buckets[j] != removed)
return buckets[j]->val;
}
return nullptr;
}
/* 添加操作 */
void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres)
extend();
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if (buckets[j] == nullptr || buckets[j] == removed) {
buckets[j] = new Pair(key, val);
size += 1;
return;
}
// 若遇到指定 key ,则更新对应 val
if (buckets[j]->key == key) {
buckets[j]->val = val;
return;
}
}
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则直接返回
if (buckets[j] == nullptr)
return;
// 若遇到指定 key ,则标记删除并返回
if (buckets[j]->key == key) {
delete buckets[j]; // 释放内存
buckets[j] = removed;
size -= 1;
return;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
vector<Pair *> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = vector<Pair *>(capacity, nullptr);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair *pair : bucketsTmp) {
if (pair != nullptr && pair != removed) {
put(pair->key, pair->val);
}
}
}
/* 打印哈希表 */
void print() {
for (auto &pair : buckets) {
if (pair != nullptr) {
cout << pair->key << " -> " << pair->val << endl;
} else {
cout << "nullptr" << endl;
}
}
}
};
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private int size; // 键值对数量
private int capacity; // 哈希表容量
private double loadThres; // 触发扩容的负载因子阈值
private int extendRatio; // 扩容倍数
private Pair[] buckets; // 桶数组
private Pair removed; // 删除标记
/* 构造方法 */
public HashMapOpenAddressing() {
size = 0;
capacity = 4;
loadThres = 2.0 / 3.0;
extendRatio = 2;
buckets = new Pair[capacity];
removed = new Pair(-1, "-1");
}
/* 哈希函数 */
public int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
public double loadFactor() {
return (double) size / capacity;
}
/* 查询操作 */
public String get(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则返回 null
if (buckets[j] == null)
return null;
// 若遇到指定 key ,则返回对应 val
if (buckets[j].key == key && buckets[j] != removed)
return buckets[j].val;
}
return null;
}
/* 添加操作 */
public void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if (buckets[j] == null || buckets[j] == removed) {
buckets[j] = new Pair(key, val);
size += 1;
return;
}
// 若遇到指定 key ,则更新对应 val
if (buckets[j].key == key) {
buckets[j].val = val;
return;
}
}
}
/* 删除操作 */
public void remove(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则直接返回
if (buckets[j] == null) {
return;
}
// 若遇到指定 key ,则标记删除并返回
if (buckets[j].key == key) {
buckets[j] = removed;
size -= 1;
return;
}
}
}
/* 扩容哈希表 */
public void extend() {
// 暂存原哈希表
Pair[] bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new Pair[capacity];
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair pair : bucketsTmp) {
if (pair != null && pair != removed) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
public void print() {
for (Pair pair : buckets) {
if (pair != null) {
System.out.println(pair.key + " -> " + pair.val);
} else {
System.out.println("null");
}
}
}
}
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
Pair[] buckets; // 桶数组
Pair removed; // 删除标记
/* 构造方法 */
public HashMapOpenAddressing() {
size = 0;
capacity = 4;
loadThres = 2.0 / 3.0;
extendRatio = 2;
buckets = new Pair[capacity];
removed = new Pair(-1, "-1");
}
/* 哈希函数 */
private int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
private double loadFactor() {
return (double)size / capacity;
}
/* 查询操作 */
public string get(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则返回 null
if (buckets[j] == null)
return null;
// 若遇到指定 key ,则返回对应 val
if (buckets[j].key == key && buckets[j] != removed)
return buckets[j].val;
}
return null;
}
/* 添加操作 */
public void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if (buckets[j] == null || buckets[j] == removed) {
buckets[j] = new Pair(key, val);
size += 1;
return;
}
// 若遇到指定 key ,则更新对应 val
if (buckets[j].key == key) {
buckets[j].val = val;
return;
}
}
}
/* 删除操作 */
public void remove(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % capacity;
// 若遇到空桶,说明无此 key ,则直接返回
if (buckets[j] == null) {
return;
}
// 若遇到指定 key ,则标记删除并返回
if (buckets[j].key == key) {
buckets[j] = removed;
size -= 1;
return;
}
}
}
/* 扩容哈希表 */
private void extend() {
// 暂存原哈希表
Pair[] bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new Pair[capacity];
size = 0;
// 将键值对从原哈希表搬运至新哈希表
foreach (Pair pair in bucketsTmp) {
if (pair != null && pair != removed) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
public void print() {
foreach (Pair pair in buckets) {
if (pair != null) {
Console.WriteLine(pair.key + " -> " + pair.val);
} else {
Console.WriteLine("null");
}
}
}
}
/* 链式地址哈希表 */
type hashMapOpenAddressing struct {
size int // 键值对数量
capacity int // 哈希表容量
loadThres float64 // 触发扩容的负载因子阈值
extendRatio int // 扩容倍数
buckets []pair // 桶数组
removed pair // 删除标记
}
/* 构造方法 */
func newHashMapOpenAddressing() *hashMapOpenAddressing {
buckets := make([]pair, 4)
return &hashMapOpenAddressing{
size: 0,
capacity: 4,
loadThres: 2 / 3.0,
extendRatio: 2,
buckets: buckets,
removed: pair{
key: -1,
val: "-1",
},
}
}
/* 哈希函数 */
func (m *hashMapOpenAddressing) hashFunc(key int) int {
return key % m.capacity
}
/* 负载因子 */
func (m *hashMapOpenAddressing) loadFactor() float64 {
return float64(m.size) / float64(m.capacity)
}
/* 查询操作 */
func (m *hashMapOpenAddressing) get(key int) string {
idx := m.hashFunc(key)
// 线性探测,从 index 开始向后遍历
for i := 0; i < m.capacity; i++ {
// 计算桶索引,越过尾部返回头部
j := (idx + 1) % m.capacity
// 若遇到空桶,说明无此 key ,则返回 null
if m.buckets[j] == (pair{}) {
return ""
}
// 若遇到指定 key ,则返回对应 val
if m.buckets[j].key == key && m.buckets[j] != m.removed {
return m.buckets[j].val
}
}
// 若未找到 key 则返回空字符串
return ""
}
/* 添加操作 */
func (m *hashMapOpenAddressing) put(key int, val string) {
// 当负载因子超过阈值时,执行扩容
if m.loadFactor() > m.loadThres {
m.extend()
}
idx := m.hashFunc(key)
// 线性探测,从 index 开始向后遍历
for i := 0; i < m.capacity; i++ {
// 计算桶索引,越过尾部返回头部
j := (idx + i) % m.capacity
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if m.buckets[j] == (pair{}) || m.buckets[j] == m.removed {
m.buckets[j] = pair{
key: key,
val: val,
}
m.size += 1
return
}
// 若遇到指定 key ,则更新对应 val
if m.buckets[j].key == key {
m.buckets[j].val = val
}
}
}
/* 删除操作 */
func (m *hashMapOpenAddressing) remove(key int) {
idx := m.hashFunc(key)
// 遍历桶,从中删除键值对
// 线性探测,从 index 开始向后遍历
for i := 0; i < m.capacity; i++ {
// 计算桶索引,越过尾部返回头部
j := (idx + 1) % m.capacity
// 若遇到空桶,说明无此 key ,则直接返回
if m.buckets[j] == (pair{}) {
return
}
// 若遇到指定 key ,则标记删除并返回
if m.buckets[j].key == key {
m.buckets[j] = m.removed
m.size -= 1
}
}
}
/* 扩容哈希表 */
func (m *hashMapOpenAddressing) extend() {
// 暂存原哈希表
tmpBuckets := make([]pair, len(m.buckets))
copy(tmpBuckets, m.buckets)
// 初始化扩容后的新哈希表
m.capacity *= m.extendRatio
m.buckets = make([]pair, m.capacity)
m.size = 0
// 将键值对从原哈希表搬运至新哈希表
for _, p := range tmpBuckets {
if p != (pair{}) && p != m.removed {
m.put(p.key, p.val)
}
}
}
/* 打印哈希表 */
func (m *hashMapOpenAddressing) print() {
for _, p := range m.buckets {
if p != (pair{}) {
fmt.Println(strconv.Itoa(p.key) + " -> " + p.val)
} else {
fmt.Println("nil")
}
}
}
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
var size: Int // 键值对数量
var capacity: Int // 哈希表容量
var loadThres: Double // 触发扩容的负载因子阈值
var extendRatio: Int // 扩容倍数
var buckets: [Pair?] // 桶数组
var removed: Pair // 删除标记
/* 构造方法 */
init() {
size = 0
capacity = 4
loadThres = 2 / 3
extendRatio = 2
buckets = Array(repeating: nil, count: capacity)
removed = Pair(key: -1, val: "-1")
}
/* 哈希函数 */
func hashFunc(key: Int) -> Int {
key % capacity
}
/* 负载因子 */
func loadFactor() -> Double {
Double(size / capacity)
}
/* 查询操作 */
func get(key: Int) -> String? {
let index = hashFunc(key: key)
// 线性探测,从 index 开始向后遍历
for i in stride(from: 0, to: capacity, by: 1) {
// 计算桶索引,越过尾部返回头部
let j = (index + i) % capacity
// 若遇到空桶,说明无此 key ,则返回 nil
if buckets[j] == nil {
return nil
}
// 若遇到指定 key ,则返回对应 val
if buckets[j]?.key == key, buckets[j] != removed {
return buckets[j]?.val
}
}
return nil
}
/* 添加操作 */
func put(key: Int, val: String) {
// 当负载因子超过阈值时,执行扩容
if loadFactor() > loadThres {
extend()
}
let index = hashFunc(key: key)
// 线性探测,从 index 开始向后遍历
for i in stride(from: 0, through: capacity, by: 1) {
// 计算桶索引,越过尾部返回头部
let j = (index + i) % capacity
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if buckets[j] == nil || buckets[j] == removed {
buckets[j] = Pair(key: key, val: val)
size += 1
return
}
// 若遇到指定 key ,则更新对应 val
if buckets[j]?.key == key {
buckets[j]?.val = val
return
}
}
}
/* 删除操作 */
func remove(key: Int) {
let index = hashFunc(key: key)
// 线性探测,从 index 开始向后遍历
for i in stride(from: 0, to: capacity, by: 1) {
// 计算桶索引,越过尾部返回头部
let j = (index + i) % capacity
// 若遇到空桶,说明无此 key ,则直接返回
if buckets[j] == nil {
return
}
// 若遇到指定 key ,则标记删除并返回
if buckets[j]?.key == key {
buckets[j] = removed
size -= 1
return
}
}
}
/* 扩容哈希表 */
func extend() {
// 暂存原哈希表
let bucketsTmp = buckets
// 初始化扩容后的新哈希表
capacity *= extendRatio
buckets = Array(repeating: nil, count: capacity)
size = 0
// 将键值对从原哈希表搬运至新哈希表
for pair in bucketsTmp {
if let pair, pair != removed {
put(key: pair.key, val: pair.val)
}
}
}
/* 打印哈希表 */
func print() {
for pair in buckets {
if let pair {
Swift.print("\(pair.key) -> \(pair.val)")
} else {
Swift.print("null")
}
}
}
}
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
#size; // 键值对数量
#capacity; // 哈希表容量
#loadThres; // 触发扩容的负载因子阈值
#extendRatio; // 扩容倍数
#buckets; // 桶数组
#removed; // 删除标记
/* 构造方法 */
constructor() {
this.#size = 0;
this.#capacity = 4;
this.#loadThres = 2.0 / 3.0;
this.#extendRatio = 2;
this.#buckets = new Array(this.#capacity).fill(null);
this.#removed = new Pair(-1, '-1');
}
/* 哈希函数 */
#hashFunc(key) {
return key % this.#capacity;
}
/* 负载因子 */
#loadFactor() {
return this.#size / this.#capacity;
}
/* 查询操作 */
get(key) {
const index = this.#hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (let i = 0; i < this.#capacity; i++) {
// 计算桶索引,越过尾部返回头部
const j = (index + i) % this.#capacity;
// 若遇到空桶,说明无此 key ,则返回 null
if (this.#buckets[j] === null) return null;
// 若遇到指定 key ,则返回对应 val
if (
this.#buckets[j].key === key &&
this.#buckets[j][key] !== this.#removed.key
)
return this.#buckets[j].val;
}
return null;
}
/* 添加操作 */
put(key, val) {
// 当负载因子超过阈值时,执行扩容
if (this.#loadFactor() > this.#loadThres) {
this.#extend();
}
const index = this.#hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (let i = 0; i < this.#capacity; i++) {
// 计算桶索引,越过尾部返回头部
let j = (index + i) % this.#capacity;
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if (
this.#buckets[j] === null ||
this.#buckets[j][key] === this.#removed.key
) {
this.#buckets[j] = new Pair(key, val);
this.#size += 1;
return;
}
// 若遇到指定 key ,则更新对应 val
if (this.#buckets[j].key === key) {
this.#buckets[j].val = val;
return;
}
}
}
/* 删除操作 */
remove(key) {
const index = this.#hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (let i = 0; i < this.#capacity; i++) {
// 计算桶索引,越过尾部返回头部
const j = (index + i) % this.#capacity;
// 若遇到空桶,说明无此 key ,则直接返回
if (this.#buckets[j] === null) {
return;
}
// 若遇到指定 key ,则标记删除并返回
if (this.#buckets[j].key === key) {
this.#buckets[j] = this.#removed;
this.#size -= 1;
return;
}
}
}
/* 扩容哈希表 */
#extend() {
// 暂存原哈希表
const bucketsTmp = this.#buckets;
// 初始化扩容后的新哈希表
this.#capacity *= this.#extendRatio;
this.#buckets = new Array(this.#capacity).fill(null);
this.#size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (const pair of bucketsTmp) {
if (pair !== null && pair.key !== this.#removed.key) {
this.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
print() {
for (const pair of this.#buckets) {
if (pair !== null) {
console.log(pair.key + ' -> ' + pair.val);
} else {
console.log('null');
}
}
}
}
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
#size: number; // 键值对数量
#capacity: number; // 哈希表容量
#loadThres: number; // 触发扩容的负载因子阈值
#extendRatio: number; // 扩容倍数
#buckets: Pair[]; // 桶数组
#removed: Pair; // 删除标记
/* 构造方法 */
constructor() {
this.#size = 0;
this.#capacity = 4;
this.#loadThres = 2.0 / 3.0;
this.#extendRatio = 2;
this.#buckets = new Array(this.#capacity).fill(null);
this.#removed = new Pair(-1, '-1');
}
/* 哈希函数 */
#hashFunc(key: number): number {
return key % this.#capacity;
}
/* 负载因子 */
#loadFactor(): number {
return this.#size / this.#capacity;
}
/* 查询操作 */
get(key: number): string | null {
const index = this.#hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (let i = 0; i < this.#capacity; i++) {
// 计算桶索引,越过尾部返回头部
const j = (index + i) % this.#capacity;
// 若遇到空桶,说明无此 key ,则返回 null
if (this.#buckets[j] === null) return null;
// 若遇到指定 key ,则返回对应 val
if (
this.#buckets[j].key === key &&
this.#buckets[j][key] !== this.#removed.key
)
return this.#buckets[j].val;
}
return null;
}
/* 添加操作 */
put(key: number, val: string): void {
// 当负载因子超过阈值时,执行扩容
if (this.#loadFactor() > this.#loadThres) {
this.#extend();
}
const index = this.#hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (let i = 0; i < this.#capacity; i++) {
// 计算桶索引,越过尾部返回头部
let j = (index + i) % this.#capacity;
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if (
this.#buckets[j] === null ||
this.#buckets[j][key] === this.#removed.key
) {
this.#buckets[j] = new Pair(key, val);
this.#size += 1;
return;
}
// 若遇到指定 key ,则更新对应 val
if (this.#buckets[j].key === key) {
this.#buckets[j].val = val;
return;
}
}
}
/* 删除操作 */
remove(key: number): void {
const index = this.#hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (let i = 0; i < this.#capacity; i++) {
// 计算桶索引,越过尾部返回头部
const j = (index + i) % this.#capacity;
// 若遇到空桶,说明无此 key ,则直接返回
if (this.#buckets[j] === null) {
return;
}
// 若遇到指定 key ,则标记删除并返回
if (this.#buckets[j].key === key) {
this.#buckets[j] = this.#removed;
this.#size -= 1;
return;
}
}
}
/* 扩容哈希表 */
#extend(): void {
// 暂存原哈希表
const bucketsTmp = this.#buckets;
// 初始化扩容后的新哈希表
this.#capacity *= this.#extendRatio;
this.#buckets = new Array(this.#capacity).fill(null);
this.#size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (const pair of bucketsTmp) {
if (pair !== null && pair.key !== this.#removed.key) {
this.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
print(): void {
for (const pair of this.#buckets) {
if (pair !== null) {
console.log(pair.key + ' -> ' + pair.val);
} else {
console.log('null');
}
}
}
}
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
late int _size; // 键值对数量
late int _capacity; // 哈希表容量
late double _loadThres; // 触发扩容的负载因子阈值
late int _extendRatio; // 扩容倍数
late List<Pair?> _buckets; // 桶数组
late Pair _removed; // 删除标记
/* 构造方法 */
HashMapOpenAddressing() {
_size = 0;
_capacity = 4;
_loadThres = 2.0 / 3.0;
_extendRatio = 2;
_buckets = List.generate(_capacity, (index) => null);
_removed = Pair(-1, "-1");
}
/* 哈希函数 */
int hashFunc(int key) {
return key % _capacity;
}
/* 负载因子 */
double loadFactor() {
return _size / _capacity;
}
/* 查询操作 */
String? get(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < _capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % _capacity;
// 若遇到空桶,说明无此 key ,则返回 null
if (_buckets[j] == null) return null;
// 若遇到指定 key ,则返回对应 val
if (_buckets[j]!.key == key && _buckets[j] != _removed)
return _buckets[j]!.val;
}
return null;
}
/* 添加操作 */
void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > _loadThres) {
extend();
}
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < _capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % _capacity;
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
if (_buckets[j] == null || _buckets[j] == _removed) {
_buckets[j] = new Pair(key, val);
_size += 1;
return;
}
// 若遇到指定 key ,则更新对应 val
if (_buckets[j]!.key == key) {
_buckets[j]!.val = val;
return;
}
}
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
// 线性探测,从 index 开始向后遍历
for (int i = 0; i < _capacity; i++) {
// 计算桶索引,越过尾部返回头部
int j = (index + i) % _capacity;
// 若遇到空桶,说明无此 key ,则直接返回
if (_buckets[j] == null) {
return;
}
// 若遇到指定 key ,则标记删除并返回
if (_buckets[j]!.key == key) {
_buckets[j] = _removed;
_size -= 1;
return;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
List<Pair?> bucketsTmp = _buckets;
// 初始化扩容后的新哈希表
_capacity *= _extendRatio;
_buckets = List.generate(_capacity, (index) => null);
_size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair? pair in bucketsTmp) {
if (pair != null && pair != _removed) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
void printHashMap() {
for (Pair? pair in _buckets) {
if (pair != null) {
print("${pair.key} -> ${pair.val}");
} else {
print(null);
}
}
}
}
/* 开放寻址哈希表 */
struct HashMapOpenAddressing {
size: usize,
capacity: usize,
load_thres: f32,
extend_ratio: usize,
buckets: Vec<Option<Pair>>,
removed: Pair,
}
impl HashMapOpenAddressing {
/* 构造方法 */
fn new() -> Self {
Self {
size: 0,
capacity: 4,
load_thres: 2.0 / 3.0,
extend_ratio: 2,
buckets: vec![None; 4],
removed: Pair {
key: -1,
val: "-1".to_string(),
},
}
}
/* 哈希函数 */
fn hash_func(&self, key: i32) -> usize {
(key % self.capacity as i32) as usize
}
/* 负载因子 */
fn load_factor(&self) -> f32 {
self.size as f32 / self.capacity as f32
}
/* 查询操作 */
fn get(&self, key: i32) -> Option<&str> {
let mut index = self.hash_func(key);
let capacity = self.capacity;
// 线性探测,从 index 开始向后遍历
for _ in 0..capacity {
// 计算桶索引,越过尾部返回头部
let j = (index + 1) % capacity;
match &self.buckets[j] {
// 若遇到空桶,说明无此 key ,则返回 None
None => return None,
// 若遇到指定 key ,则返回对应 val
Some(pair) if pair.key == key && pair != &self.removed => return Some(&pair.val),
_ => index = j,
}
}
None
}
/* 添加操作 */
fn put(&mut self, key: i32, val: String) {
// 当负载因子超过阈值时,执行扩容
if self.load_factor() > self.load_thres {
self.extend();
}
let mut index = self.hash_func(key);
let capacity = self.capacity;
// 线性探测,从 index 开始向后遍历
for _ in 0..capacity {
//计算桶索引,越过尾部返回头部
let j = (index + 1) % capacity;
// 若遇到空桶、或带有删除标记的桶,则将键值对放入该桶
match &mut self.buckets[j] {
bucket @ &mut None | bucket @ &mut Some(Pair { key: -1, .. }) => {
*bucket = Some(Pair { key, val });
self.size += 1;
return;
}
// 若遇到指定 key ,则更新对应 val
Some(pair) if pair.key == key => {
pair.val = val;
return;
}
_ => index = j,
}
}
}
/* 删除操作 */
fn remove(&mut self, key: i32) {
let mut index = self.hash_func(key);
let capacity = self.capacity;
// 遍历桶,从中删除键值对
for _ in 0..capacity {
let j = (index + 1) % capacity;
match &mut self.buckets[j] {
// 若遇到空桶,说明无此 key ,则直接返回
None => return,
// 若遇到指定 key ,则标记删除并返回
Some(pair) if pair.key == key => {
*pair = Pair {
key: -1,
val: "-1".to_string(),
};
self.size -= 1;
return;
}
_ => index = j,
}
}
}
/* 扩容哈希表 */
fn extend(&mut self) {
// 暂存原哈希表
let buckets_tmp = self.buckets.clone();
// 初始化扩容后的新哈希表
self.capacity *= self.extend_ratio;
self.buckets = vec![None; self.capacity];
self.size = 0;
// 将键值对从原哈希表搬运至新哈希表
for pair in buckets_tmp {
if let Some(pair) = pair {
self.put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
fn print(&self) {
for pair in &self.buckets {
match pair {
Some(pair) => println!("{} -> {}", pair.key, pair.val),
None => println!("None"),
}
}
}
}
2. 多次哈希¶
顾名思义,多次哈希方法是使用多个哈希函数 \(f_1(x)\)、\(f_2(x)\)、\(f_3(x)\)、\(\dots\) 进行探测。
- 插入元素:若哈希函数 \(f_1(x)\) 出现冲突,则尝试 \(f_2(x)\) ,以此类推,直到找到空位后插入元素。
- 查找元素:在相同的哈希函数顺序下进行查找,直到找到目标元素时返回;或遇到空位或已尝试所有哈希函数,说明哈希表中不存在该元素,则返回 \(\text{None}\) 。
与线性探测相比,多次哈希方法不易产生聚集,但多个哈希函数会增加额外的计算量。
6.2.3 编程语言的选择¶
Java 采用链式地址。自 JDK 1.8 以来,当 HashMap 内数组长度达到 64 且链表长度达到 8 时,链表会被转换为红黑树以提升查找性能。
Python 采用开放寻址。字典 dict 使用伪随机数进行探测。
Golang 采用链式地址。Go 规定每个桶最多存储 8 个键值对,超出容量则连接一个溢出桶;当溢出桶过多时,会执行一次特殊的等量扩容操作,以确保性能。