# 二分查找 「二分查找 Binary Search」是一种基于分治思想的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。 我们先来求解一个简单的二分查找问题。 !!! question 给定一个长度为 $n$ 的有序数组 `nums` ,元素按从小到大的顺序排列。请查找并返回元素 `target` 在该数组中的索引。若数组中不包含该元素,则返回 $-1$ 。数组中不包含重复元素。 该数组的索引范围可以使用区间 $[0, n - 1]$ 来表示。其中,**中括号表示“闭区间”,即包含边界值本身**。在该表示下,区间 $[i, j]$ 在 $i = j$ 时仍包含一个元素,在 $i > j$ 时为空区间。 接下来,我们基于上述区间定义实现二分查找。先初始化指针 $i = 0$ 和 $j = n - 1$ ,分别指向数组首元素和尾元素。之后循环执行以下两个步骤: 1. 计算中点索引 $m = \lfloor {(i + j) / 2} \rfloor$ ,其中 $\lfloor \space \rfloor$ 表示向下取整操作。 2. 根据 `nums[m]` 和 `target` 缩小搜索区间,分为三种情况: 1. 当 `nums[m] < target` 时,说明 `target` 在区间 $[m + 1, j]$ 中,因此执行 $i = m + 1$ ; 2. 当 `nums[m] > target` 时,说明 `target` 在区间 $[i, m - 1]$ 中,因此执行 $j = m - 1$ ; 3. 当 `nums[m] = target` 时,说明找到目标元素,直接返回索引 $m$ 即可; **若数组不包含目标元素,搜索区间最终会缩小为空**,即达到 $i > j$ 。此时,终止循环并返回 $-1$ 即可。 如下图所示,为了更清晰地表示区间,我们以折线图的形式表示数组。 === "<0>" ![二分查找步骤](binary_search.assets/binary_search_step0.png) === "<1>" ![binary_search_step1](binary_search.assets/binary_search_step1.png) === "<2>" ![binary_search_step2](binary_search.assets/binary_search_step2.png) === "<3>" ![binary_search_step3](binary_search.assets/binary_search_step3.png) === "<4>" ![binary_search_step4](binary_search.assets/binary_search_step4.png) === "<5>" ![binary_search_step5](binary_search.assets/binary_search_step5.png) === "<6>" ![binary_search_step6](binary_search.assets/binary_search_step6.png) === "<7>" ![binary_search_step7](binary_search.assets/binary_search_step7.png) 值得注意的是,**当数组长度 $n$ 很大时,加法 $i + j$ 的结果可能会超出 `int` 类型的取值范围**。为了避免大数越界,我们通常采用公式 $m = \lfloor {i + (j - i) / 2} \rfloor$ 来计算中点。 === "Java" ```java title="binary_search.java" [class]{binary_search}-[func]{binarySearch} ``` === "C++" ```cpp title="binary_search.cpp" [class]{}-[func]{binarySearch} ``` === "Python" ```python title="binary_search.py" [class]{}-[func]{binary_search} ``` === "Go" ```go title="binary_search.go" [class]{}-[func]{binarySearch} ``` === "JavaScript" ```javascript title="binary_search.js" [class]{}-[func]{binarySearch} ``` === "TypeScript" ```typescript title="binary_search.ts" [class]{}-[func]{binarySearch} ``` === "C" ```c title="binary_search.c" [class]{}-[func]{binarySearch} ``` === "C#" ```csharp title="binary_search.cs" [class]{binary_search}-[func]{binarySearch} ``` === "Swift" ```swift title="binary_search.swift" [class]{}-[func]{binarySearch} ``` === "Zig" ```zig title="binary_search.zig" [class]{}-[func]{binarySearch} ``` 时间复杂度为 $O(\log n)$ 。每轮缩小一半区间,因此二分循环次数为 $\log_2 n$ 。 空间复杂度为 $O(1)$ 。指针 `i` , `j` 使用常数大小空间。 ## 区间表示方法 除了上述的双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 $[0, n)$ ,即左边界包含自身,右边界不包含自身。在该表示下,区间 $[i, j]$ 在 $i = j$ 时为空。 我们可以基于该表示实现具有相同功能的二分查找算法。 === "Java" ```java title="binary_search.java" [class]{binary_search}-[func]{binarySearchLCRO} ``` === "C++" ```cpp title="binary_search.cpp" [class]{}-[func]{binarySearchLCRO} ``` === "Python" ```python title="binary_search.py" [class]{}-[func]{binary_search_lcro} ``` === "Go" ```go title="binary_search.go" [class]{}-[func]{binarySearchLCRO} ``` === "JavaScript" ```javascript title="binary_search.js" [class]{}-[func]{binarySearchLCRO} ``` === "TypeScript" ```typescript title="binary_search.ts" [class]{}-[func]{binarySearchLCRO} ``` === "C" ```c title="binary_search.c" [class]{}-[func]{binarySearchLCRO} ``` === "C#" ```csharp title="binary_search.cs" [class]{binary_search}-[func]{binarySearchLCRO} ``` === "Swift" ```swift title="binary_search.swift" [class]{}-[func]{binarySearchLCRO} ``` === "Zig" ```zig title="binary_search.zig" [class]{}-[func]{binarySearchLCRO} ``` 如下图所示,在两种区间表示下,二分查找算法的初始化、循环条件和缩小区间操作皆有所不同。 在“双闭区间”表示法中,由于左右边界都被定义为闭区间,因此指针 $i$ 和 $j$ 缩小区间操作也是对称的。这样更不容易出错。因此,**我们通常采用“双闭区间”的写法**。 ![两种区间定义](binary_search.assets/binary_search_ranges.png) ## 优点与局限性 二分查找在时间和空间方面都有较好的性能: - **二分查找的时间效率高**。在大数据量下,对数阶的时间复杂度具有显著优势。例如,当数据大小 $n = 2^{20}$ 时,线性查找需要 $2^{20} = 1048576$ 轮循环,而二分查找仅需 $\log_2 2^{20} = 20$ 轮循环。 - **二分查找无需额外空间**。相较于需要借助额外空间的搜索算法(例如哈希查找),二分查找更加节省空间。 然而,二分查找并非适用于所有情况,原因如下: - **二分查找仅适用于有序数据**。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 $O(n \log n)$ ,比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为 $O(n)$ ,也是非常昂贵的。 - **二分查找仅适用于数组**。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。 - **小数据量下,线性查找性能更佳**。在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 $n$ 较小时,线性查找反而比二分查找更快。