""" File: avl_tree.py Created Time: 2022-12-20 Author: a16su (lpluls001@gmail.com) """ import sys, os.path as osp sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__)))) from modules import * class AVLTree: """AVL 树""" def __init__(self): """构造方法""" self._root = None def get_root(self) -> TreeNode | None: """获取二叉树根节点""" return self._root def height(self, node: TreeNode | None) -> int: """获取节点高度""" # 空节点高度为 -1 ,叶节点高度为 0 if node is not None: return node.height return -1 def update_height(self, node: TreeNode | None): """更新节点高度""" # 节点高度等于最高子树高度 + 1 node.height = max([self.height(node.left), self.height(node.right)]) + 1 def balance_factor(self, node: TreeNode | None) -> int: """获取平衡因子""" # 空节点平衡因子为 0 if node is None: return 0 # 节点平衡因子 = 左子树高度 - 右子树高度 return self.height(node.left) - self.height(node.right) def right_rotate(self, node: TreeNode | None) -> TreeNode | None: """右旋操作""" child = node.left grand_child = child.right # 以 child 为原点,将 node 向右旋转 child.right = node node.left = grand_child # 更新节点高度 self.update_height(node) self.update_height(child) # 返回旋转后子树的根节点 return child def left_rotate(self, node: TreeNode | None) -> TreeNode | None: """左旋操作""" child = node.right grand_child = child.left # 以 child 为原点,将 node 向左旋转 child.left = node node.right = grand_child # 更新节点高度 self.update_height(node) self.update_height(child) # 返回旋转后子树的根节点 return child def rotate(self, node: TreeNode | None) -> TreeNode | None: """执行旋转操作,使该子树重新恢复平衡""" # 获取节点 node 的平衡因子 balance_factor = self.balance_factor(node) # 左偏树 if balance_factor > 1: if self.balance_factor(node.left) >= 0: # 右旋 return self.right_rotate(node) else: # 先左旋后右旋 node.left = self.left_rotate(node.left) return self.right_rotate(node) # 右偏树 elif balance_factor < -1: if self.balance_factor(node.right) <= 0: # 左旋 return self.left_rotate(node) else: # 先右旋后左旋 node.right = self.right_rotate(node.right) return self.left_rotate(node) # 平衡树,无须旋转,直接返回 return node def insert(self, val): """插入节点""" self._root = self.insert_helper(self._root, val) def insert_helper(self, node: TreeNode | None, val: int) -> TreeNode: """递归插入节点(辅助方法)""" if node is None: return TreeNode(val) # 1. 查找插入位置,并插入节点 if val < node.val: node.left = self.insert_helper(node.left, val) elif val > node.val: node.right = self.insert_helper(node.right, val) else: # 重复节点不插入,直接返回 return node # 更新节点高度 self.update_height(node) # 2. 执行旋转操作,使该子树重新恢复平衡 return self.rotate(node) def remove(self, val: int): """删除节点""" self._root = self.remove_helper(self._root, val) def remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None: """递归删除节点(辅助方法)""" if node is None: return None # 1. 查找节点,并删除之 if val < node.val: node.left = self.remove_helper(node.left, val) elif val > node.val: node.right = self.remove_helper(node.right, val) else: if node.left is None or node.right is None: child = node.left or node.right # 子节点数量 = 0 ,直接删除 node 并返回 if child is None: return None # 子节点数量 = 1 ,直接删除 node else: node = child else: # 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 temp = node.right while temp.left is not None: temp = temp.left node.right = self.remove_helper(node.right, temp.val) node.val = temp.val # 更新节点高度 self.update_height(node) # 2. 执行旋转操作,使该子树重新恢复平衡 return self.rotate(node) def search(self, val: int) -> TreeNode | None: """查找节点""" cur = self._root # 循环查找,越过叶节点后跳出 while cur is not None: # 目标节点在 cur 的右子树中 if cur.val < val: cur = cur.right # 目标节点在 cur 的左子树中 elif cur.val > val: cur = cur.left # 找到目标节点,跳出循环 else: break # 返回目标节点 return cur """Driver Code""" if __name__ == "__main__": def test_insert(tree: AVLTree, val: int): tree.insert(val) print("\n插入节点 {} 后,AVL 树为".format(val)) print_tree(tree.get_root()) def test_remove(tree: AVLTree, val: int): tree.remove(val) print("\n删除节点 {} 后,AVL 树为".format(val)) print_tree(tree.get_root()) # 初始化空 AVL 树 avl_tree = AVLTree() # 插入节点 # 请关注插入节点后,AVL 树是如何保持平衡的 test_insert(avl_tree, 1) test_insert(avl_tree, 2) test_insert(avl_tree, 3) test_insert(avl_tree, 4) test_insert(avl_tree, 5) test_insert(avl_tree, 8) test_insert(avl_tree, 7) test_insert(avl_tree, 9) test_insert(avl_tree, 10) test_insert(avl_tree, 6) # 插入重复节点 test_insert(avl_tree, 7) # 删除节点 # 请关注删除节点后,AVL 树是如何保持平衡的 test_remove(avl_tree, 8) # 删除度为 0 的节点 test_remove(avl_tree, 5) # 删除度为 1 的节点 test_remove(avl_tree, 4) # 删除度为 2 的节点 result_node = avl_tree.search(7) print("\n查找到的节点对象为 {},节点值 = {}".format(result_node, result_node.val))