--- comments: true --- # 9.2. 图基础操作 图的基础操作分为对「边」的操作和对「顶点」的操作,在「邻接矩阵」和「邻接表」这两种表示下的实现方式不同。 ## 9.2.1. 基于邻接矩阵的实现 设图的顶点总数为 $n$ ,则有: - **添加或删除边**:直接在邻接矩阵中修改指定边的对应元素即可,使用 $O(1)$ 时间。而由于是无向图,因此需要同时更新两个方向的边。 - **添加顶点**:在邻接矩阵的尾部添加一行一列,并全部填 $0$ 即可,使用 $O(n)$ 时间。 - **删除顶点**:在邻接矩阵中删除一行一列。当删除首行首列时达到最差情况,需要将 $(n-1)^2$ 个元素“向左上移动”,从而使用 $O(n^2)$ 时间。 - **初始化**:传入 $n$ 个顶点,初始化长度为 $n$ 的顶点列表 `vertices` ,使用 $O(n)$ 时间;初始化 $n \times n$ 大小的邻接矩阵 `adjMat` ,使用 $O(n^2)$ 时间。 === "初始化邻接矩阵" ![adjacency_matrix_initialization](graph_operations.assets/adjacency_matrix_initialization.png) === "添加边" ![adjacency_matrix_add_edge](graph_operations.assets/adjacency_matrix_add_edge.png) === "删除边" ![adjacency_matrix_remove_edge](graph_operations.assets/adjacency_matrix_remove_edge.png) === "添加顶点" ![adjacency_matrix_add_vertex](graph_operations.assets/adjacency_matrix_add_vertex.png) === "删除顶点" ![adjacency_matrix_remove_vertex](graph_operations.assets/adjacency_matrix_remove_vertex.png) 以下是基于邻接矩阵表示图的实现代码。 === "Java" ```java title="graph_adjacency_matrix.java" [class]{GraphAdjMat}-[func]{} ``` === "C++" ```cpp title="graph_adjacency_matrix.cpp" ``` === "Python" ```python title="graph_adjacency_matrix.py" ``` === "Go" ```go title="graph_adjacency_matrix.go" /* 基于邻接矩阵实现的无向图类 */ type graphAdjMat struct { // 顶点列表,元素代表“顶点值”,索引代表“顶点索引” vertices []int // 邻接矩阵,行列索引对应“顶点索引” adjMat [][]int } func newGraphAdjMat(vertices []int, edges [][]int) *graphAdjMat { // 添加顶点 n := len(vertices) adjMat := make([][]int, n) for i := range adjMat { adjMat[i] = make([]int, n) } // 初始化图 g := &graphAdjMat{ vertices: vertices, adjMat: adjMat, } // 添加边 // 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引 for i := range edges { g.addEdge(edges[i][0], edges[i][1]) } return g } /* 获取顶点数量 */ func (g *graphAdjMat) size() int { return len(g.vertices) } /* 添加顶点 */ func (g *graphAdjMat) addVertex(val int) { n := g.size() // 向顶点列表中添加新顶点的值 g.vertices = append(g.vertices, val) // 在邻接矩阵中添加一行 newRow := make([]int, n) g.adjMat = append(g.adjMat, newRow) // 在邻接矩阵中添加一列 for i := range g.adjMat { g.adjMat[i] = append(g.adjMat[i], 0) } } /* 删除顶点 */ func (g *graphAdjMat) removeVertex(index int) { if index >= g.size() { return } // 在顶点列表中移除索引 index 的顶点 g.vertices = append(g.vertices[:index], g.vertices[index+1:]...) // 在邻接矩阵中删除索引 index 的行 g.adjMat = append(g.adjMat[:index], g.adjMat[index+1:]...) // 在邻接矩阵中删除索引 index 的列 for i := range g.adjMat { g.adjMat[i] = append(g.adjMat[i][:index], g.adjMat[i][index+1:]...) } } /* 添加边 */ // 参数 i, j 对应 vertices 元素索引 func (g *graphAdjMat) addEdge(i, j int) { // 索引越界与相等处理 if i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j { fmt.Errorf("%s", "Index Out Of Bounds Exception") } // 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i) g.adjMat[i][j] = 1 g.adjMat[j][i] = 1 } /* 删除边 */ // 参数 i, j 对应 vertices 元素索引 func (g *graphAdjMat) removeEdge(i, j int) { // 索引越界与相等处理 if i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j { fmt.Errorf("%s", "Index Out Of Bounds Exception") } g.adjMat[i][j] = 0 g.adjMat[j][i] = 0 } ``` === "JavaScript" ```js title="graph_adjacency_matrix.js" ``` === "TypeScript" ```typescript title="graph_adjacency_matrix.ts" ``` === "C" ```c title="graph_adjacency_matrix.c" ``` === "C#" ```csharp title="graph_adjacency_matrix.cs" ``` === "Swift" ```swift title="graph_adjacency_matrix.swift" /* 基于邻接矩阵实现的无向图类 */ class GraphAdjMat { private var vertices: [Int] // 顶点列表,元素代表“顶点值”,索引代表“顶点索引” private var adjMat: [[Int]] // 邻接矩阵,行列索引对应“顶点索引” /* 构造函数 */ init(vertices: [Int], edges: [[Int]]) { self.vertices = [] adjMat = [] // 添加顶点 for val in vertices { addVertex(val: val) } // 添加边 // 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引 for e in edges { addEdge(i: e[0], j: e[1]) } } /* 获取顶点数量 */ func size() -> Int { vertices.count } /* 添加顶点 */ func addVertex(val: Int) { let n = size() // 向顶点列表中添加新顶点的值 vertices.append(val) // 在邻接矩阵中添加一行 let newRow = Array(repeating: 0, count: n) adjMat.append(newRow) // 在邻接矩阵中添加一列 for i in adjMat.indices { adjMat[i].append(0) } } /* 删除顶点 */ func removeVertex(index: Int) { if index >= size() { fatalError("越界") } // 在顶点列表中移除索引 index 的顶点 vertices.remove(at: index) // 在邻接矩阵中删除索引 index 的行 adjMat.remove(at: index) // 在邻接矩阵中删除索引 index 的列 for i in adjMat.indices { adjMat[i].remove(at: index) } } /* 添加边 */ // 参数 i, j 对应 vertices 元素索引 func addEdge(i: Int, j: Int) { // 索引越界与相等处理 if i < 0 || j < 0 || i >= size() || j >= size() || i == j { fatalError("越界") } // 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i) adjMat[i][j] = 1 adjMat[j][i] = 1 } /* 删除边 */ // 参数 i, j 对应 vertices 元素索引 func removeEdge(i: Int, j: Int) { // 索引越界与相等处理 if i < 0 || j < 0 || i >= size() || j >= size() || i == j { fatalError("越界") } adjMat[i][j] = 0 adjMat[j][i] = 0 } } ``` === "Zig" ```zig title="graph_adjacency_matrix.zig" ``` ## 9.2.2. 基于邻接表的实现 设图的顶点总数为 $n$ 、边总数为 $m$ ,则有: - **添加边**:在顶点对应链表的尾部添加边即可,使用 $O(1)$ 时间。因为是无向图,所以需要同时添加两个方向的边。 - **删除边**:在顶点对应链表中查询与删除指定边,使用 $O(m)$ 时间。与添加边一样,需要同时删除两个方向的边。 - **添加顶点**:在邻接表中添加一个链表即可,并以新增顶点为链表头结点,使用 $O(1)$ 时间。 - **删除顶点**:需要遍历整个邻接表,删除包含指定顶点的所有边,使用 $O(n + m)$ 时间。 - **初始化**:需要在邻接表中建立 $n$ 个结点和 $2m$ 条边,使用 $O(n + m)$ 时间。 === "初始化邻接表" ![adjacency_list_initialization](graph_operations.assets/adjacency_list_initialization.png) === "添加边" ![adjacency_list_add_edge](graph_operations.assets/adjacency_list_add_edge.png) === "删除边" ![adjacency_list_remove_edge](graph_operations.assets/adjacency_list_remove_edge.png) === "添加顶点" ![adjacency_list_add_vertex](graph_operations.assets/adjacency_list_add_vertex.png) === "删除顶点" ![adjacency_list_remove_vertex](graph_operations.assets/adjacency_list_remove_vertex.png) 基于邻接表实现图的代码如下所示。 === "Java" ```java title="graph_adjacency_list.java" [class]{Vertex}-[func]{} [class]{GraphAdjList}-[func]{} ``` === "C++" ```cpp title="graph_adjacency_list.cpp" ``` === "Python" ```python title="graph_adjacency_list.py" ``` === "Go" ```go title="graph_adjacency_list.go" /* 顶点类 */ type vertex struct { val int } func newVertex(val int) vertex { return vertex{ val: val, } } /* 基于邻接表实现的无向图类 */ type graphAdjList struct { // 请注意,vertices 和 adjList 中存储的都是 Vertex 对象 // 邻接表(使用哈希表实现), 使用哈希表模拟集合 adjList map[vertex]map[vertex]struct{} } /* 构造函数 */ func newGraphAdjList(edges [][]vertex) *graphAdjList { g := &graphAdjList{ adjList: make(map[vertex]map[vertex]struct{}), } // 添加所有顶点和边 for _, edge := range edges { g.addVertex(edge[0]) g.addVertex(edge[1]) g.addEdge(edge[0], edge[1]) } return g } /* 获取顶点数量 */ func (g *graphAdjList) size() int { return len(g.adjList) } /* 添加边 */ func (g *graphAdjList) addEdge(vet1 vertex, vet2 vertex) { _, ok1 := g.adjList[vet1] _, ok2 := g.adjList[vet2] if !ok1 || !ok2 || vet1 == vet2 { panic("error") } // 添加边 vet1 - vet2, 添加匿名 struct{}, g.adjList[vet1][vet2] = struct{}{} g.adjList[vet2][vet1] = struct{}{} } /* 删除边 */ func (g *graphAdjList) removeEdge(vet1 vertex, vet2 vertex) { _, ok1 := g.adjList[vet1] _, ok2 := g.adjList[vet2] if !ok1 || !ok2 || vet1 == vet2 { panic("error") } // 删除边 vet1 - vet2, 借助 delete 来删除 map 中的键 delete(g.adjList[vet1], vet2) delete(g.adjList[vet2], vet1) } /* 添加顶点 */ func (g *graphAdjList) addVertex(vet vertex) { _, ok := g.adjList[vet] if ok { return } // 在邻接表中添加一个新链表(即 set) g.adjList[vet] = make(map[vertex]struct{}) } /* 删除顶点 */ func (g *graphAdjList) removeVertex(vet vertex) { _, ok := g.adjList[vet] if !ok { panic("error") } // 在邻接表中删除顶点 vet 对应的链表 delete(g.adjList, vet) // 遍历其它顶点的链表(即 Set),删除所有包含 vet 的边 for _, set := range g.adjList { // 操作 delete(set, vet) } } ``` === "JavaScript" ```js title="graph_adjacency_list.js" ``` === "TypeScript" ```typescript title="graph_adjacency_list.ts" ``` === "C" ```c title="graph_adjacency_list.c" ``` === "C#" ```csharp title="graph_adjacency_list.cs" ``` === "Swift" ```swift title="graph_adjacency_list.swift" /* 顶点类 */ class Vertex: Hashable { var val: Int init(val: Int) { self.val = val } static func == (lhs: Vertex, rhs: Vertex) -> Bool { lhs.val == rhs.val } func hash(into hasher: inout Hasher) { hasher.combine(val) } } /* 基于邻接表实现的无向图类 */ class GraphAdjList { // 请注意,vertices 和 adjList 中存储的都是 Vertex 对象 private var adjList: [Vertex: Set] // 邻接表(使用哈希表实现) init(edges: [[Vertex]]) { adjList = [:] // 添加所有顶点和边 for edge in edges { addVertex(vet: edge[0]) addVertex(vet: edge[1]) addEdge(vet1: edge[0], vet2: edge[1]) } } /* 获取顶点数量 */ func size() -> Int { adjList.count } /* 添加边 */ func addEdge(vet1: Vertex, vet2: Vertex) { if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 { fatalError("参数错误") } // 添加边 vet1 - vet2 adjList[vet1]?.insert(vet2) adjList[vet2]?.insert(vet1) } /* 删除边 */ func removeEdge(vet1: Vertex, vet2: Vertex) { if adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 { fatalError("参数错误") } // 删除边 vet1 - vet2 adjList[vet1]?.remove(vet2) adjList[vet2]?.remove(vet1) } /* 添加顶点 */ func addVertex(vet: Vertex) { if adjList[vet] != nil { return } // 在邻接表中添加一个新链表(即 HashSet) adjList[vet] = [] } /* 删除顶点 */ func removeVertex(vet: Vertex) { if adjList[vet] == nil { fatalError("参数错误") } // 在邻接表中删除顶点 vet 对应的链表(即 HashSet) adjList.removeValue(forKey: vet) // 遍历其它顶点的链表(即 HashSet),删除所有包含 vet 的边 for key in adjList.keys { adjList[key]?.remove(vet) } } } ``` === "Zig" ```zig title="graph_adjacency_list.zig" ``` ## 9.2.3. 效率对比 设图中共有 $n$ 个顶点和 $m$ 条边,下表为邻接矩阵和邻接表的时间和空间效率对比。
| | 邻接矩阵 | 邻接表(链表) | 邻接表(哈希表) | | ------------ | -------- | -------------- | ---------------- | | 判断是否邻接 | $O(1)$ | $O(m)$ | $O(1)$ | | 添加边 | $O(1)$ | $O(1)$ | $O(1)$ | | 删除边 | $O(1)$ | $O(m)$ | $O(1)$ | | 添加顶点 | $O(n)$ | $O(1)$ | $O(1)$ | | 删除顶点 | $O(n^2)$ | $O(n + m)$ | $O(n)$ | | 内存空间占用 | $O(n^2)$ | $O(n + m)$ | $O(n + m)$ |
观察上表,貌似邻接表(哈希表)的时间与空间效率最优。但实际上,在邻接矩阵中操作边的效率更高,只需要一次数组访问或赋值操作即可。总结以上,**邻接矩阵体现“以空间换时间”,邻接表体现“以时间换空间”**。