# 二叉搜索树 如下图所示,「二叉搜索树 binary search tree」满足以下条件: 1. 对于根节点,左子树中所有节点的值 $<$ 根节点的值 $<$ 右子树中所有节点的值。 2. 任意节点的左、右子树也是二叉搜索树,即同样满足条件 `1.` 。 ![二叉搜索树](binary_search_tree.assets/binary_search_tree.png) ## 二叉搜索树的操作 我们将二叉搜索树封装为一个类 `ArrayBinaryTree` ,并声明一个成员变量 `root` ,指向树的根节点。 ### 查找节点 给定目标节点值 `num` ,可以根据二叉搜索树的性质来查找。如下图所示,我们声明一个节点 `cur` ,从二叉树的根节点 `root` 出发,循环比较节点值 `cur.val` 和 `num` 之间的大小关系: - 若 `cur.val < num` ,说明目标节点在 `cur` 的右子树中,因此执行 `cur = cur.right` 。 - 若 `cur.val > num` ,说明目标节点在 `cur` 的左子树中,因此执行 `cur = cur.left` 。 - 若 `cur.val = num` ,说明找到目标节点,跳出循环并返回该节点。 === "<1>" ![二叉搜索树查找节点示例](binary_search_tree.assets/bst_search_step1.png) === "<2>" ![bst_search_step2](binary_search_tree.assets/bst_search_step2.png) === "<3>" ![bst_search_step3](binary_search_tree.assets/bst_search_step3.png) === "<4>" ![bst_search_step4](binary_search_tree.assets/bst_search_step4.png) 二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 $O(\log n)$ 时间。 === "Java" ```java title="binary_search_tree.java" [class]{BinarySearchTree}-[func]{search} ``` === "C++" ```cpp title="binary_search_tree.cpp" [class]{BinarySearchTree}-[func]{search} ``` === "Python" ```python title="binary_search_tree.py" [class]{BinarySearchTree}-[func]{search} ``` === "Go" ```go title="binary_search_tree.go" [class]{binarySearchTree}-[func]{search} ``` === "JS" ```javascript title="binary_search_tree.js" [class]{}-[func]{search} ``` === "TS" ```typescript title="binary_search_tree.ts" [class]{}-[func]{search} ``` === "C" ```c title="binary_search_tree.c" [class]{binarySearchTree}-[func]{search} ``` === "C#" ```csharp title="binary_search_tree.cs" [class]{BinarySearchTree}-[func]{search} ``` === "Swift" ```swift title="binary_search_tree.swift" [class]{BinarySearchTree}-[func]{search} ``` === "Zig" ```zig title="binary_search_tree.zig" [class]{BinarySearchTree}-[func]{search} ``` === "Dart" ```dart title="binary_search_tree.dart" [class]{BinarySearchTree}-[func]{search} ``` === "Rust" ```rust title="binary_search_tree.rs" [class]{BinarySearchTree}-[func]{search} ``` ### 插入节点 给定一个待插入元素 `num` ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作流程如下图所示。 1. **查找插入位置**:与查找操作相似,从根节点出发,根据当前节点值和 `num` 的大小关系循环向下搜索,直到越过叶节点(遍历至 $\text{None}$ )时跳出循环。 2. **在该位置插入节点**:初始化节点 `num` ,将该节点置于 $\text{None}$ 的位置。 ![在二叉搜索树中插入节点](binary_search_tree.assets/bst_insert.png) 在代码实现中,需要注意以下两点: - 二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。 - 为了实现插入节点,我们需要借助节点 `pre` 保存上一轮循环的节点。这样在遍历至 $\text{None}$ 时,我们可以获取到其父节点,从而完成节点插入操作。 === "Java" ```java title="binary_search_tree.java" [class]{BinarySearchTree}-[func]{insert} ``` === "C++" ```cpp title="binary_search_tree.cpp" [class]{BinarySearchTree}-[func]{insert} ``` === "Python" ```python title="binary_search_tree.py" [class]{BinarySearchTree}-[func]{insert} ``` === "Go" ```go title="binary_search_tree.go" [class]{binarySearchTree}-[func]{insert} ``` === "JS" ```javascript title="binary_search_tree.js" [class]{}-[func]{insert} ``` === "TS" ```typescript title="binary_search_tree.ts" [class]{}-[func]{insert} ``` === "C" ```c title="binary_search_tree.c" [class]{binarySearchTree}-[func]{insert} ``` === "C#" ```csharp title="binary_search_tree.cs" [class]{BinarySearchTree}-[func]{insert} ``` === "Swift" ```swift title="binary_search_tree.swift" [class]{BinarySearchTree}-[func]{insert} ``` === "Zig" ```zig title="binary_search_tree.zig" [class]{BinarySearchTree}-[func]{insert} ``` === "Dart" ```dart title="binary_search_tree.dart" [class]{BinarySearchTree}-[func]{insert} ``` === "Rust" ```rust title="binary_search_tree.rs" [class]{BinarySearchTree}-[func]{insert} ``` 与查找节点相同,插入节点使用 $O(\log n)$ 时间。 ### 删除节点 与插入节点类似,我们需要在删除操作后维持二叉搜索树的“左子树 < 根节点 < 右子树”的性质。首先,我们需要在二叉树中执行查找操作,获取待删除节点。接下来,根据待删除节点的子节点数量,删除操作需分为三种情况: 如下图所示,当待删除节点的度为 $0$ 时,表示待删除节点是叶节点,可以直接删除。 ![在二叉搜索树中删除节点(度为 0)](binary_search_tree.assets/bst_remove_case1.png) 如下图所示,当待删除节点的度为 $1$ 时,将待删除节点替换为其子节点即可。 ![在二叉搜索树中删除节点(度为 1)](binary_search_tree.assets/bst_remove_case2.png) 当待删除节点的度为 $2$ 时,我们无法直接删除它,而需要使用一个节点替换该节点。由于要保持二叉搜索树“左 $<$ 根 $<$ 右”的性质,**因此这个节点可以是右子树的最小节点或左子树的最大节点**。 假设我们选择右子树的最小节点(即中序遍历的下一个节点),则删除操作如下图所示。 1. 找到待删除节点在“中序遍历序列”中的下一个节点,记为 `tmp` 。 2. 将 `tmp` 的值覆盖待删除节点的值,并在树中递归删除节点 `tmp` 。 === "<1>" ![二叉搜索树删除节点示例](binary_search_tree.assets/bst_remove_case3_step1.png) === "<2>" ![bst_remove_case3_step2](binary_search_tree.assets/bst_remove_case3_step2.png) === "<3>" ![bst_remove_case3_step3](binary_search_tree.assets/bst_remove_case3_step3.png) === "<4>" ![bst_remove_case3_step4](binary_search_tree.assets/bst_remove_case3_step4.png) 删除节点操作同样使用 $O(\log n)$ 时间,其中查找待删除节点需要 $O(\log n)$ 时间,获取中序遍历后继节点需要 $O(\log n)$ 时间。 === "Java" ```java title="binary_search_tree.java" [class]{BinarySearchTree}-[func]{remove} ``` === "C++" ```cpp title="binary_search_tree.cpp" [class]{BinarySearchTree}-[func]{remove} ``` === "Python" ```python title="binary_search_tree.py" [class]{BinarySearchTree}-[func]{remove} ``` === "Go" ```go title="binary_search_tree.go" [class]{binarySearchTree}-[func]{remove} ``` === "JS" ```javascript title="binary_search_tree.js" [class]{}-[func]{remove} ``` === "TS" ```typescript title="binary_search_tree.ts" [class]{}-[func]{remove} ``` === "C" ```c title="binary_search_tree.c" [class]{binarySearchTree}-[func]{removeNode} ``` === "C#" ```csharp title="binary_search_tree.cs" [class]{BinarySearchTree}-[func]{remove} ``` === "Swift" ```swift title="binary_search_tree.swift" [class]{BinarySearchTree}-[func]{remove} ``` === "Zig" ```zig title="binary_search_tree.zig" [class]{BinarySearchTree}-[func]{remove} ``` === "Dart" ```dart title="binary_search_tree.dart" [class]{BinarySearchTree}-[func]{remove} ``` === "Rust" ```rust title="binary_search_tree.rs" [class]{BinarySearchTree}-[func]{remove} ``` ### 中序遍历性质 如下图所示,二叉树的中序遍历遵循“左 $\rightarrow$ 根 $\rightarrow$ 右”的遍历顺序,而二叉搜索树满足“左子节点 $<$ 根节点 $<$ 右子节点”的大小关系。 这意味着在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:**二叉搜索树的中序遍历序列是升序的**。 利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 $O(n)$ 时间,无须额外排序,非常高效。 ![二叉搜索树的中序遍历序列](binary_search_tree.assets/bst_inorder_traversal.png) ## 二叉搜索树的效率 给定一组数据,我们考虑使用数组或二叉搜索树存储。 观察下表,二叉搜索树的各项操作的时间复杂度都是对数阶,具有稳定且高效的性能表现。只有在高频添加、低频查找删除的数据适用场景下,数组比二叉搜索树的效率更高。

表:数组与搜索树的效率对比

| | 无序数组 | 二叉搜索树 | | -------- | -------- | ----------- | | 查找元素 | $O(n)$ | $O(\log n)$ | | 插入元素 | $O(1)$ | $O(\log n)$ | | 删除元素 | $O(n)$ | $O(\log n)$ | 在理想情况下,二叉搜索树是“平衡”的,这样就可以在 $\log n$ 轮循环内查找任意节点。 然而,如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为下图所示的链表,这时各种操作的时间复杂度也会退化为 $O(n)$ 。 ![二叉搜索树的平衡与退化](binary_search_tree.assets/bst_degradation.png) ## 二叉搜索树常见应用 - 用作系统中的多级索引,实现高效的查找、插入、删除操作。 - 作为某些搜索算法的底层数据结构。 - 用于存储数据流,以保持其有序状态。